CS60021: Scalable Data Mining

Sourangshu Bhattacharya

COURSE DETAILS

Teachers

• Teacher:

– Sourangshu Bhattacharya

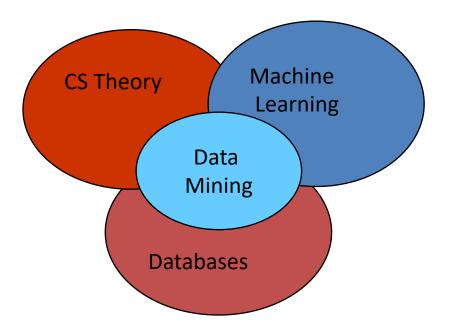
- Teaching Assistants:
 - Kiran Purohit
 - Anurag P.

Venue

- Classroom: CSE 107
- Slots:
 - Monday (8:00 9:55)
 - Tuesday (12:00 12:55)
- Website: TBA
- Moodle (for assignment submission): <u>https://moodlecse.iitkgp.ac.in/moodle/</u>
- Student key: SDBSB2324

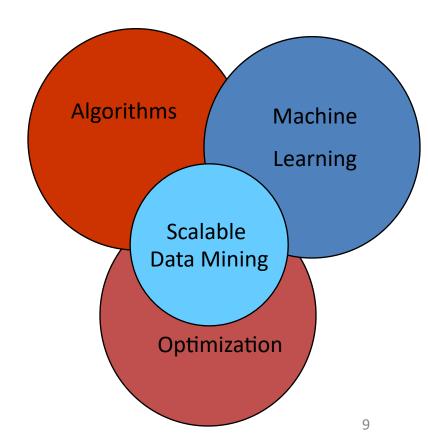
Evaluation

- Grades:
 - Tests: 50
 - Term Project / Assignment: 30
 - Class Test: 20
- Number of Assignments: 3
- Both Term Project and Assignment will require you to write code.


COURSE BACKGROUND

What is Data Mining?

- Given lots of data
- Discover patterns and models that are:
 - Valid: should hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern
 - A lot of the Data Mining Techniques are borrowed from Machine Learning / Deep Learning techniques.


Data Mining: Cultures

- Data mining overlaps with:
 - Databases: Large-scale data, simple queries
 - Machine learning: Small data, Complex models
 - CS Theory: (Randomized) Algorithms
- In this class, we will explore scalable algorithms and systems for Data Mining.

This Course

- This class overlaps with machine learning, statistics, artificial intelligence, databases but more stress on
 - Algorithms
 - Online / Streaming
 - Optimization
 - Computing architectures

Pre-requisites

- Algorithms.
- Machine Learning / Data Analytics / Information Retrieval.
- Linear Algebra
- Probability, statistics, calculus

EXAMPLE APPLICATIONS

Word Count Distribution

- Compute word-bigram count distribution for wikipedia corpus.
- 5 million documents
- 1.9 million unique words, ? bigrams
- Problem:
 - Input, output and intermediate results are large.
 - You are allowed to use multiple computers.
 - Algorithm is simple.
- Use Map-reduce / Spark

Large Scale Machine Learning

- Train massive deep learning models on massive datasets.
- Dataset too large:
 - Speed up train by speeding up optimization
 - Acceleration techniques.
- Dataset distributed / privacy concerns:
 - Distributed optimization.
 - Federated Learning.
- Model is too complex:
 - Use GPU to train
 - Pytorch.

Algorithmic Techniques

- Distinct items in a stream:
 - Count number of distinct IP addresses passing through a server.
 - Streaming model.
 - Problem: 128^4 IP addresses
 - Approximate sketching: FM sketch, count-min sketch.
- Fast nearest neighbor search.
 - Compute similarity to all existing examples in dataset and pick the top ones.
 - Locality sensitive hashing.
 - FAISS

Subset Selection

- Data subset selection:
 - Select a subset of data which is most informative
 - Measure of "informativeness"
 - Diversity ?
 - Fast algorithms:
 - Submodular
 - Sparse approximation
 - Convex Optimization
- Applications:
 - Filter-selection in neural networks
 - Selecting frames to skip in streaming videos.

Tentative Syllabus

Week	Topics
7/8 - 11/8	Introduction to DM, ML, Stochastic gradient descent.
14/8 - 18/8	Variance reduction, Momentum algorithms, ADAM.
21/8 - 25/8	Distributed SGD, ADMM
28/8 - 1/9	Pytorch
4/9 - 8/9	Map-reduce framework, Hadoop
11/9 - 15/9	Spark
18/9 - 22/9	Mid-sem
25/9 - 29/9	Mid-sem
2/10 - 6/10	Federated Learning.
9/10 - 13/10	Similarity Search, Shingles, Minhashing, Locality Sensitive Hashing families.
16/10 - 20/10	FAISS, Submodular Optimization
23/10 - 27/10	Autumn Break
30/10 - 3/11	Sparse Approximation, Convex Optimisation, Stream processing - Sampling
6/11 - 10/11	Bloom filtering, Count-based sketches: FM sketch, AMS sketch.
13/11 - 17/11	Hash-based sketches: count sketch.

THANKS !