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Submodular Subset
Selection

Slides taken from 1JCAI 2020 tutorial by
Rishabh lyer and Ganesh Ramakrishnan



Combinatorial Subset Selection Problems

f:2V 5 R Choose Subset A C V

f(A) is maximum

General Set function Optimization: very hard!

What if there is some special structure?



Submodular Functions

FIAU V) — f(A) > f(BUV) — f(B), f AC B
f. f. Negativeof a
Submodular
vy

.. Functionis a
‘ Supermodular
f = # of distinct colors of balls in the urn.

Function!




Equivalent Definitions of Submodularity

. Diminishing gains: forall A, B CV ‘ +es
F(AUV) — f(A) > f(BUV) — f(B), if AC B

- Union-Intersection: forall A, B CV
f(A)+ f(B) = f(AuB) + f(AN B)

oo-® @ L



Modular Functions

* each element e has a weight w e
F(S) = i
es

e

ACB
F(AUe) - F(A)=w(e) = F(BUe)— F(B)=w(e)

Modular Functions are both submodular and supermodular!



Monotone Submodular Functions

¢ A set function is called monotonic if
ACBCV = F(A) < F(B)

¢ Examples:
® Influence in social networks [Kempe et al KDD 03]

*® For discrete RVs, entropy F(A) = H(X,) is monotonic:
Suppose B=A U C. Then
F(B) = H(X,, Xc) = H(X,) + H(X. | X,) > H(X,) = F(A)

® Information gain: F(A) = H(Y)-H(Y | X,)



Instantiations of Submodular Functions

(] Representation Functions
U Facility Location Function (k-mediods
clustering)
O Graph Cut Family, Saturated Coverage

U Diversity Functions

W Dispersion Functions (Min, Sum, Min-
Sum)
[ Determinantal Point Processes

U Coverage Functions
[ Set Cover Function

[ Probabilistic Set Cover Function
[ Feature Based Functions

O Importance Functions
] Modular Functions

] Information Functions
] Mutual Information

] Entropy

] Discounted Cost Functions
] Clustered Concave over Modular Functions

] Cooperative Costs and Saturations

J Complexity Functions
] Bipartite Neighborhood Functions



Representation Functions
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Similarity Kernel lyer 2015, Kaushal et al 2019, Tschiatchek et a2014, ...



Diversity Functions: Dispersion
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Dispersion Sum and Dispersion Min Not Submodular!

Diversity Functions
Picks items as different as possible!

Dasgupta et al 2013, Chakraborty et al 2015



Coverage Functions
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Set Cover Function

f(X) = w(UiexU;), .
1 Coverage Functions
Concepts Covered by Instance i

Mall &

s Female

Select instances which “cover” dconcepts
Wolsey et al1982, ...



Feature Based Functions
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Feature Based Functions

ffea(s) - Z ga(my(S)).
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Total Contribution of Feature u in the Set of Images S

Achieve
Uniformity in
Feature
Coverage

Wei-lyer et d2014...



Information Functions

X1,..., X, discrete random variables: X, € {1,...,m}

F(S) = H(Xg) = joint entropy of variables indexed by S

ACB,e¢ B F(AUe) - F(A) > F(BUe) — F(B)??

H(Xave) — H(XA) = H(X.|Xa)

< H(X.|Xp) “information never hurts”

= H(XBue) — H(XB)

discrete entropy is submodular!
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Entropy
Mutual Information
Information Gain

Krause et al2008, ...



Master Optimization Problem

Set Function F Models:
Vaum Selected set e

maXF(A) iversity |

ACY * Representation
Selection cost——"—, Budget * Coverage
i —Budge
subject to C(A) < B * Information
* |mportance

F = Monotone Submodular,
Non Monotone Submodular,
Dispersion Functions,

We shall study this and variants of this Master Optimization Problem!



Monotone Submodular Maximization

max F(S) st. |S| <k

What is the Constraint?
C(S) = |S]

* greedy algorithm:

So =10

fori=0, ..., k-1

= F(S; U
o =g Tl (S; U{e})

Sarg = Syl {6*}

How “good

"is S ?

Approximation

Guarantee!



How good is Greedy in Practice?

empirically:
9
8l optimal

sensor placement

greedy
7 L i

A O O

information gain

1 2 3 4 5
Number of sensors placed



How good is Greedy in Theory?

max F(S) st. |S| <k

Theorem (Nemhauser, Fisher, Wolsey "78)

F monotone submodular, S;  solution of greedy. Then

F(Sy) > (1_2) F(Sj)\

No Poly-time algorithm can do better than this in the worst case!

optimal solution




Proof (Nemhauser et al 1978)

Let:
« A; = (v1,v9,...,v;) be the the chain formed by the greedy algorithm, as defined
above
« A* = (v}, v},...,v}) be the optimal solution, in an arbitrary order

« f be a monotone submodular function. Let f > 0 (Update on 04/25/2019: | thought
this was w.l.0.g., but Andrey Kolobov pointed out that we actually need f to be non
negative)

« OPT = f(A*), the value of the optimal solution.

We will prove that

f(Ax) > (1 —1/e)OPT

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

Forall 2 < k, we have:

f(A*) < f(A* U 4 ) Monotonicity
+ZA vi|Ai U{v],v3,...,v5 1 })
)+ Z A(z|A;) Using submodularity
zeA”
< f(4;) + Z A(vit1]A;) Vit1 = argmaz,eyv 4, A(v|4;)
zeA”

= f(Ai) + kA(viy1]As)

Rearranging the terms, we have proved that

A(vin|41) = 1 (OPT — f(47)

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Proof (Nemhauser et al 1978)

-

\

Part |

Plugging this into our previous equation, we have:

=
=

\ / Part I

1 k
Now we define §; = OPT — f(A;). This implies = O < <1 - E) do
0; — div1 = f(Ait1) — f(Ai) = A(vig1|4i)

k
> & < (1— %) OPT < l()PT
e
1

0; = Ot = E(éz) |:> OPT — f(Ax) < EOPT
1
div1 < (1— E)(SZ I:> f(Ag) > (1 — é) OPT

AN

~

/

Source: https://homes.cs.washington.edu/~marcotcr/blog/greedy-submodular/



Monotone Submodular — Budget Constraints

max F(S) s.t. Zce

ecS
1. run greedy: Sg;
2. run a modified greedy: S, .4
e" = arg max F(BaU (et} —F15)
c(e)

3. pick better of Sy, Shioa

=» approximation factor:

even better but less fast:

partial enumeration
(Sviridenko, 2004) or
filtering (Badanidiyuru &
Vondrak 2014)

Svmdenko 2004:
Run the cost-sensitive
greedy algorithm starting
with all possible initial sets
{1.i,k}

« 0 n3 initial complexity

e 1 (— 1/)3 approximation!

Sviridenko 2004, Leskovec et al 2007




Summary: Greedy Algorithm Framework

Monotone Submodular Function

!
max f(S)
SCV.o(S)<B

Cost of Summary Subset S (e.g. size)

Problem Formulation

Initialization S « 0.

repeat

Pick an element v* € argmax, ¢, s
Update S+ Su v*

until Reaching the budget, i.e., ¢(S) > B

f(VvUS)—£(S)
c(v)

Greedy Algorithm




Non-Monotone Submodular Functions

max F(S) s.t. |S| <k

Start with Yy = ()
for:=1 to k do

Let M; = argmaxycy\y, ;,|X|=k ZUEX f(U\Yz'—l);

Choose y as a uniformly random element in M;;

| o= Ypg Uag

return Y.

Theorem (Buchbinder et al 2014): The Randomized Greedy Algorithm achieves a 1/e approximation
guarantee for Non-Monotone Submodular Maximization subject to cardinality constraints!



Data subset selection



Make ML Data Efficient and Robust

Data Model Model Model
Preparation Training Validation Deployment
1. Data Labeling 1. Mo_dgl Selection 1. Deployment Infra
2. Feature Engineering 2. Training Budget Often repeated for 2. latency & Memory

3. Batch sizes, Partitions hyper-parameter tuning

Production Systems Constraints
Data Labeling -=> Time Consuming, Expensive, Noisy under these constraints
Feature Selection => Latency & Memory without sacrificing
Model Training => Compute Intensive and Time Consuming on accuracy?
Hyper-Parameter Tuning/NAS => Very Time Consuming

Distribution Shift => Deployment vs Training

Can we train Models

kLN pRE



Data Subset Selection Setup

A Machine Learning model characterized by model parameters {

Training Data: {(a’j,” y@-),i c Z/{} Training log-likelihood function: LL71(8,U)

Training a machine learning model often reduces to finding the parameters that
maximizes a log-likelihood function for given training data empirically.

0* = argmax LL7(0,U)
0
Validation Data: {(x;,%;),% € V} Validation log-likelihood function: LLy (8,V)

Goal: Select a subset S C U such that the resulting model performs the best!



Requirements for optimal subset
selection

1. The subset selection algorithm needs to be as fast as possible.
» Subset Selection time <<<< Full training time

Example: Subset selection algorithm with negligible time complexity
Training on 10 % Subset wmmmm 1() 3¢ Faster training

2. Theoretical guarantees of subset selection algorithm.
e Can we show theoretical guarantees for subset selection algorithms?



Approaches for Data Subset Selection

[ Several different kinds of approaches studied in literature:
0 Approach 1: Use Submodular Functions as proxy functions for data subset selection

O Approach 2: Choose data subset which approximates the gradient of the entire dataset

O Approach 3: Choose data subset which approximates the performance on full training
dataset (or validation set) as a bi-level optimization!

UApproach 4: Choose data subset which minimizes a suitable divergence (e.g. KL
divergence) between the distribution induced by the subset and full data!
O Types of Data Selection
O Supervised (Using the labels)
O Unsupervised (No access to labels)
O Validation based (Access to a validation set for focusing on generalization)



|dea: Gradient Matching/ CoreSets

Can we obtain a weighted

gradient of a subset of points that
approximates the full gradient?

> wiVyLip(0) ~ VoL(0)

1€ Xy

Sivasubramaniam & Killamsetty et. al. 2021, Mirzasoleiman et al 2020



Gradient Matching/ CoreSets Convergence

Denote Ly as the validation loss, Ly as the full training loss, and L%,

as the training loss on the ‘" training example. Furthermore, assume
that both losses have gradients bounded by o7 and oy respectively, and
that the parameters satisfy ||0%||> < R? (0* is the optimal parameter).
Then letting L denote either the training or validation loss (with gradient
bounded by &), any data selection algorithm, defined via weights w' and

== 1l w3 i : _ _R
subse.ts Xy forl = L, ,T", and run with a learning rate o« = T
satisfies:
n L(9,) — L(e*) < 2L 4 B TzlE 565, I T )
trilll% t = \/T rr W t) T,Vt
where:

Err(w', Xy, L, L7, 0;) = || Y wiVoLi(8;) — VoL(6;)

1€Xy

Sivasubramaniam & Killamsetty et. al. 2021



Gradient Matching: Main Idea

The theorem indicates that an effective data selection algorithm
should try to have a low error Err(w', X, L, L7, 6,) for

t=1,---.T. Thus, we can pose the problem as,
w', X; = min Err(w,X,L,Lr,0;)
w,X:| X |<k

: t ]
— min Z w:Valt(0.) — Val.(6
w.‘X':|X|§/f||Z,EXt i Vo T< t) 0 ( f)”

Sivasubramaniam & Killamsetty et. al. 2021



CRAIG as an upper bound

Facility location can be thought as an upper bound for this. Suppose

we define 7} € argminc v ||VgL'(0) — VoL (6)

if L = Lo, then

W = U otherwise if L = Ly then W =V and wj = 3,y [} = 7]

then, for any 6; we can write

Err(w, X, L, L7.,0;) = |VL(8;) — Y wiVLL(8,)||

1€X
- | = azion - vazien)
€W
< Y IIVoL7(6:) — VoL (6:)]),
€W

Sivasubramaniam & Killamsetty et. al. 2021, Mirzasoleiman et al 2020



Directly Optimizing Gradient Error: GradMatch

Define the regularized version of our objective:

E\(X) =min|| > wiVeLi(8:) — VoL (8| + Allw'|?
1€X¢

\ - 7

E)\(Xt,wt)

This problem can be solved efficiently using Orthogonal Matching
Pursuit (OMP) described as,

1.

Sl g0 B T

Find projection of r = VyL%.(6,) for each i € W along VyL(0;) and
chose the 7 with whom projection is maximum and add it X

Solve linear regression problem to find w! for i € Xs.

Set r = V@L(@t) — ZieXt w%VQL?T(Qt)

Repeat the steps with new r until the || < € or | X| < k(budget)
Return X, wy

Sivasubramaniam & Killamsetty et. al. 2021



Orthogonal Matching Pursuit

The OMP algorithm

Algorithm 1: OMP(A, b)

Input: A)b

Result: x;
1 Initialization ryo = b, A = &;
2 Normalize all columns of A to unit Ly norm;
3 Remove duplicated columns in A ;
4 fork=1,2,...do
5 Step-1. A, = argmax |(aj, rx—1)|;

JEA 1

Step-2. Ay = A1 U {)\k};
Step-3. xi(i € Ag) = argmin ||[Ap, x — bll2, xx(i ¢ Ax) =0;

8 Step-4. E)k = Axy;

9 Step-5. rp +— b — f)k;
0 end




Convex DSS



Aim

* We study the problem of data efficient training of
autonomous driving systems.

* Training using many frames on straight road sections may
not be necessary. Frames at the turns turn out to be useful.

[ S—

I | IA " | I~| _—

REDUNDANT INFORMATIVE
Method Train One-Turn Test One-Turn
Uniform Skip 3/10 5/10

In the context of edge device deployment, multi-criteria online
subset selection (OSS) framework can be useful in selecting
iInformative frames, essential for an end-task.



Subset selection on Edge devices

Incoming video -_u (Zl(iud
frames/ data - transfer ~ <
points D

— —_
e e - -

A
-
~— - |
!
!
]
1

Reduced video / | 1

I
|
| dataset :
|
Pairwise Pointwise | :
Distances Losses : I
I Task specific :
B N : models
Multi-Criteria OSS , E.g. driving model, '
| semantic |
1 | segmentation model, I
' |
' |
Selected incoming video ] |
frames / data points ‘Permanently Stored Data |
7/
~ -

I Adding to existing data




High Level |dea

* Given a compression ratio, find out representatives which
have the least dissimilarity with the left-out elements
besides having the highest task-specific loss.



Problem Setup

o X;:the set of incoming datapoints at time t (Size m)
o D:set of all data points (Size N)
e R;:Reduced set of data at time t

o d;;: Distance between data points | and j.

o z;j: Indicator variable indicating that datapointiis a
representative for datapoint j.



Convex Subset Selection

o Original formulation in set notation:

min A|S| + E min d;;,
SCD L ics
Jj€D

 Formulation using indicator random variables z;;:

{Hzﬂ% A I(”[Z'Ll Zig v ]||p)‘|‘zzdz‘jzi

. . />i€D JED €D
Size regularizer

N
s.t. zi; €{0,1}, Y z;=1, Vi,j€D.
i=1

o Convex relaxation:
0< Zij <1



Online Subset Selection

e Attimet:
R;_q: old set (denoted by superscript o)
X;:in the new set (denoted by superscript n)
R;: the new reduced set that we are trying to compute using z;;
Ry = Ry, U{i € X¢|Z;; = 1}

e Revised formulation:

enc Z Z don on+ Z Z dnn Zn’

1€€, JEDx 1€Dn jJEDn

o et S

i€Dn €0 = Re—1
D, =X

s: 4 2"

Zz —I—Zz"”—l Vje€D,,

iego ZED



High Level |dea

* Given a compression ratio, find out representatives which
have the least dissimilarity with the left-out elements
besides having the highest task-specific loss.

* Highest task-specific loss ensures having situational task:
needed to be learnt more by the model.



TMCOSS

Adopts a facility location objective involving multiple criteria
|R,|

min €(z, 2)s . 1. Zzw+2z’]—l 2,22 € [0,1]; Z“[Zu 22, < frac*m

Objective function Constraint 1 Constraint 2 Compression Ratio
Z.Q — 1 Denotes j from existing set o is a representative of element i from incoming set n
Y
Zg = 1 Denotes j from incoming set n is a representative of element i from incoming set n
m R |R,|
l], l;’ = p( Z Z Zodo(t) + Z Z”d”(t)) —(1-=p)( Z SO * L" + Z Sn *L”) where, S7 = —mln(e Z ), 8" = —mln(e Zzl;’)
i=1 j=1 i,j=1 Jj=1 j=1 i=1

N~ S

e Representative power of element j
Task specific Loss thresholded by €

Dissimilarity



Justification for thresholding

Theorem 1 Let zj; and z7; be the optimal solution for for- Corollary 1.1 Let 2°. and = b(’ the optimal solution for

mulation 1. A new fl(llll(’ ] € X4 is selected as a repre- : 4
e 8 L ; NG : ormulation 1. A new fram is selected as a rep-
sentative frame for at least one incoming frame i € X4, f rmuta 11. A ne f’a € J E Xt+1 elected as a rej

i.e. 25 = 1, only if BOTH these conditions hold: resentative frame for at least one incoming frame i € X1,
ie. zj5; =1, only if BOTH these conditions hold:

~q

* For some incoming frame i € X¢41, QF < Q. for

all j' € Xey1and j' # j * L} > LY forall j’ € X¢y1 and j' # j

. N 9 : o b
1"0:1 smom’ :nunnlnf _/n:me i € X, QU < . In P R | S ||
125 1 QU AT 5z m 51]le g > ||zv_z||1

125 111

where k = argmin;) ", 22.Q%,, and |27,

where k = argmin;y i, 20;Q7 5, and |z7||1 =
i 1":] 1,7 " n
Zi’:l Zit g

Z]’

Multi-criteria OSS (MCOSS)?

Qf =pd; — (1 —p)L Q) = pdi; — (1 — p)L?

m |Rt| m m
0 nn n n
min >, > 2505+ D, j0f +4 ) a7,
PR =1 j=1 i,j=1 j=1

|R;|
5.t Zz +sz—1 Vi € X122 € [0,1], Vi, j

1. Soumi Das, Sayan Mondal, Ashwin Bhoyar, Madhumita Bharde, Niloy Ganguly, Suparna Bhattacharya, Sourangshu Bhattacharya, "Multi-criteria onlineframe-subset
selection for autonomous vehicle videos." Pattern Recognition Letters 133 (2020): 349-355.
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