CS60021: Scalable Data Mining

Streaming Algorithms

Sourangshu Bhattacharya

Count distinct

Streaming problem: distinct count

- Universe is U, number of distinct elements = m, stream size is n
 - Example: U = all IP addresses

10.1.21.10, 10.93.28,1,....,98.0.3.1,....10.93.28.1.....

- IPs can repeat
- Want to estimate the number of distinct elements in the stream

Other applications

 Universe = set of all k-grams, stream is generated by document corpus

need number of distinct k-grams seen in corpus

- Universe = telephone call records, stream generated by tuples (caller, callee)
 - need number of phones that made > 0 calls

Solutions

- Seen *n* elements from stream with elements from *U*.
- Naïve solution: $O(n \log |U|)$ space
 - Store all elements, sort and count distinct
 - Store a hashmap, insert if not present
- Bit array: O(|U|) space:
 - Bits initialized to 1 only if element seen in stream
- Can we do this in less space ?

Approximations

• (ϵ, δ) –approximations

- Algorithm will use random hash functions
- Will return an answer \hat{n} such that

$$(1-\epsilon)n \leq \hat{n} \leq (1+\epsilon)n$$

– This will happen with probability $1-\delta$ over the randomness of the algorithm

First effort

- Stream length: *n*, distinct elements: *m*
- Proposed algo: Given space s, sample s items from the stream
 - Find the number of distinct elements in this set: \widehat{m}

- return m =
$$\widehat{m} \times \frac{n}{s}$$

• Not a constant factor approximation

- 1, 1, 1, 1,, 1, 2, 3, 4,, m-1

$$n - m + 1$$

Linear Counting

- Bit array *B* of size *m*, initialized to all zero
- Hash function $h: U \rightarrow [m]$
- When seeing item x , set B[h(x)] = 1

Linear Counting

- Bit array *B* of size *m*, initialized to all zero
- Hash function $h: U \rightarrow [m]$
- When seeing item x , set B[h(x)] = 1

- $z_m =$ fraction of zero entries
- Return estimate $-m \log(\frac{z_m}{m})$

Linear Counting Analysis

- Pr[position remaining 0] = $\left(1 \frac{1}{m}\right)^n \approx e^{-\frac{n}{m}}$
- Expected number of positions at zero: $E[z_m] = me^{-n/m}$
- Using tail inequalities we can show this is concentrated
- Typically useful only for $m = \Theta(n)$, often useful in practice

Flajolet Martin Sketch

Flajolet Martin Sketch

- Components
 - "random" hash function $h: U \to 2^{\ell}$ for some large ℓ
 - -h(x) is a ℓ -length bit string
 - initially assume it is completely random, can relax
- zero(v) = position of rightmost 1 in bit representation of v
 = max{ i, 2ⁱ divides v }

-zeros(10110) = 1, zeros(110101000) = 3

Flajolet Martin Sketch

Initialize:

– Choose a "random" hash function $h: U \rightarrow 2^{\ell}$

 $-z \leftarrow 0$

Process(x)

$$- \text{ if } zeros(h(x)) > z, \ z \leftarrow zeros(h(x))$$

Estimate:

- return $2^{z+1/2}$

Example

		igodol					
	V			U		\mathbf{igcup}	

	h(.)
ightarrow	0110101
•	1011010
\bigcirc	1000100
	1111010

Space usage

- We need $\ell \ge C \log(n)$ for some $C \ge 3$, say
 - by birthday paradox analysis, no collisions with high prob
- Sketch : z, needs to have only $O(\log \log n)$ bits
- Total space usage = $O(\log n + \log \log n)$

Intuition

- Assume hash values are uniformly distributed
- The probability that a uniform bit-string
 - is divisible by 2 is $\frac{1}{2}$
 - is divisible by 4 is $\frac{1}{4}$
 -
 - is divisible by 2^k is $\frac{1}{2^k}$
- We don't expect any of them to be divisible by $2^{\log_2(n)+1}$

Formalizing intuition

- S = set of elements that appeared in stream
- For any $r \in [\ell], j \in [n], X_{rj} = \text{indicator of } \operatorname{zeros}(h(j)) \ge r$
- $Y_r = \text{number of } j \in U \text{ such that } \operatorname{zeros}(h(j)) \ge r$

$$Y_r = \sum_{j \in S} X_{rj}$$

• Let \hat{z} be final value of z after the algorithm has seen all data

Proof of FM

• $Y_r > 0 \iff \hat{z} \ge r$, equivalently, $Y_r = 0 \iff \hat{z} < r$

•
$$E[Y_r] = \sum_{j \in S} E[X_{rj}]$$
 $X_{rj} = \begin{cases} 1 \text{ with prob } \frac{1}{2^r} \\ 0 \text{ else} \end{cases}$

• $E[Y_r] = \frac{n}{2^r}$

•
$$var(Y_r) = \sum_{j \in S} var(X_{rj}) \leq \sum_{j \in S} E[X_{rj}^2]$$

Proof of FM

• $var(Y_r) \leq \sum_{j \in S} E[X_{rj}^2] \leq n/2^r$

$$\Pr[Y_r > 0] = \Pr[Y_r \ge 1] \le \frac{E[Y_r]}{1} = \frac{n}{2^r}$$
$$\Pr[Y_r = 0] \le \Pr[|Y_r - E[Y_r]| \ge E[Y_r]] \le \frac{var(Y_r)}{E[Y_r]^2} \le \frac{2^r}{n}$$

Upper bound

Returned estimate $\hat{n} = 2^{\hat{z}+1/2}$

 $a = \text{smallest integer with } 2^{a+1/2} \ge 4n$

$$\Pr[\hat{n} \ge 4n] = \Pr[\hat{z} \ge a] = \Pr[Y_a > 0] \le \frac{n}{2^a} \le \frac{\sqrt{2}}{4}$$

Lower bound

Returned estimate $\hat{n} = 2^{\hat{z}+1/2}$

 $b = \text{largest integer with } 2^{b+1/2} \le n/4$

$$\Pr\left[\hat{n} \le \frac{n}{4}\right] = \Pr\left[\hat{z} \le b\right] = \Pr[Y_{b+1} = 0] \le \frac{2^{b+1}}{n} \le \frac{\sqrt{2}}{4}$$

Understanding the bound

• By union bound, with prob $1 - \frac{\sqrt{2}}{2}$, $\frac{n}{4} \le \hat{n} \le 4n$

- Can get somewhat better constants
- Need only 2-wise independent hash functions, since we only used variances

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}, \widehat{z_2}, ..., \widehat{z_k}$ in parallel – return median
- Expect at most $\frac{\sqrt{2}}{4}k$ of them to exceed 4n
- But if median exceeds 4n, then $\frac{k}{2}$ of them does exceed 4n \rightarrow using this prob is $\exp(-\Omega(k))$

Improving the probabilities

- To improve the probabilities, a common trick: median of estimates
- Create $\widehat{z_1}, \widehat{z_2}, ..., \widehat{z_k}$ in parallel – return median
- Using Chernoff bound, can show that median will lie in $\left[\frac{n}{4}, 4n\right]$ with probability $1 \exp(-\Omega(k))$.
- Given error prob δ , choose $k = O(\log(\frac{1}{\delta}))$

k-minimum value Sketch

k-MV sketch

- Developed in an effort to get better accuracy
 - Flajolet Martin only give multiplicative accuracy
- Additional capabilities for estimating cardinalities of union and intersection of streams
 - If S_1 and S_2 are two streams, can compute their union sketch from individual sketches of S_1 and S_2

[kMV sketch slides courtesy Cohen-Wang]

Intuition

- Suppose h: U → [0,1] is random hash function such that h(x) ~ U[0,1] for all x ∈ U
- Maintain min-hash value y
 - initialize $y \leftarrow 1$
 - For each item x_i , $y \leftarrow \min(y, h(x_i))$

• Expectation of minimum is $E[\min_{i} h(x_i)] = \frac{1}{n+1}$

Why is expectation of min = $\frac{1}{n+1}$?

Intuition:

- You have sampled *n* points uniformly at random in interval [0,1]
- n + 1 intervals are formed.
- Expected length of each interval is $\frac{1}{n+1}$
- Value of $E[\min_{i} X_{i}]$ is the length of an interval.

Why is expectation of min = $\frac{1}{n+1}$?

Assuming a
$$X_i = U(0,1)$$
, we have:

$$P\left(\min_i X_i \le x\right) = 1 - P\left(\min_i X_i \ge x\right) = 1 - (1-x)^n$$

So, the density function is: $f(x) = n(1 - x)^{n-1}$

Hence,

$$E[\min_{i} X_{i}] = \int_{0}^{1} xf(x)dx = n \int_{0}^{1} x(1-x)^{n-1}dx = \frac{1}{n+1}$$

k-minimum value sketch

Initialize:

$$-y_1, \dots, y_k \leftarrow 1, \dots 1$$

– Uniform random hash functions $h_1, \dots, h_k, h_i: U \rightarrow [0,1]$

Process(x):

- For all
$$j \in [k]$$
, $y_j \leftarrow \min(y_j, h_j(x_i))$

Estimate:

- return median-of-means
$$(\frac{1}{y_1}, \dots, \frac{1}{y_k})$$

Example

	h1	h2	h3	h4
	.45	.19	.10	.92
0	.35	.51	.71	.20
0	.21	.07	.93	.18
	.14	.70	.50	.25

Median-of-means

- Given (ϵ, δ) , choose $k = \frac{c}{\epsilon^2} \log(\frac{1}{\delta})$
- Group $t_1, \dots t_k$ into $\log(\frac{1}{\delta})$ groups of size $\frac{c}{\epsilon^2}$ each
- Find mean (t_i) for each group: $Z_1, \dots, Z_{\log(\frac{1}{\delta})}$
- Return $\hat{n} = \text{median of } Z_1, \dots Z_{\log(\frac{1}{\delta})}$

Complexity

- Total space required = $O(k \log n) = O(\frac{1}{\epsilon^2} \log n \log(\frac{1}{\delta}))$
 - can be improved
 - don't need floating points, can use $h: U \to 2^{\ell}$ as before
- Update time per item = O(k)

- However, can show that most items will not result in updates

Theoretical Guarantees

With probability $1 - \delta$, returns \hat{n} satisfies

$$(1 - \epsilon)n \le \hat{n} \le (1 + \epsilon)n$$

Proof: Apply Chebychef's inequality

$$P(|X_N - \mu_X| \ge \epsilon) \le \frac{\sigma_X^2}{N\epsilon^2} \Rightarrow N \ge \frac{\sigma_X^2}{\epsilon^2}$$

followed by Chernoff bounding.

Merging

 For two stream S₁ and S₂ use same set of hash functions

- Stream S_i has sketch (y_1^i, \dots, y_k^i)

- For each j ∈ [k], find the combined sketch as:
 y_j = min(y_j¹, y_j²)
- Gives estimate of $|S_1 \cup S_2|$

References:

- Primary reference for this lecture
 - Lecture notes by Amit Chakrabarti: <u>http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf</u>