
Scalable Data Mining
Sourangshu Bhattacharya

Approx imate NN Search
● Data (D):

– Many vectors (millions or billions)

Input (Q):●

– One query vector (not necessarily
from D)

Output:●

– The k vectors from D that are
closest to Q

Solutions

• Locality sensitive hashing
• Space subdivision methods:
• KD-trees
• Slow for high-dimensional data

• Proximity Graph based methods
• HNSW

• For index compression (not discussed):
• Product quantization.

Proximity Graph

• Vertices are datapoints
• Edges between datapoints close to each other.

• Search is performed by browsing neighbors for each points.
• Start with an initial point.
• Browse to the neighbor closest to the query point
• Stop when you have reached local minima, i.e. distance to the current node is

less than distance to all neighbors

• K-nearest neighbor graph
• The length of search path is large.
• Not small world.

Hierarchical Navigable Small World

• The proximity graph should be:
• Navigable Small World graph.

• The maximum distance between any two nodes
should be low.

• PolyLogarithmic scaling during greedy traversal.
• There are high degree nodes which are

connected to many nodes.
• Sometimes, performance degrades due to far

entry point.
• Hierarchical NSW:

• Graphs at different levels with varying sparsity.
• Inspired by skip lists.

HNSW - Search

• Given a HNSW index for a dataset, and query q:
1. Start searching from the top layer with the default entry point.
2. Calculate the entry point to the lower layer from the nearest neighbor

found in previous layer.
3. Repeat from step 1.

• For searching the nearest neighbors in each layer:
• Search the neighborhood of each point in the neighborhood of entry point.
• Return a list of ef closest points to query.

• Detailed algorithm in the next slide.

HNSW - Search

HNSW - Insert

• The HNSW index is formed by first creating an empty index with no
levels. The parameters are:
• Normalization factor for level generation - 𝑚!.
• Maximum number of connections for each datapoint per layer - 𝑀"#$.

• Randomly select the maximum layer l at which the datapoint is
inserted.
• For each layer from l to 0:
• Find the nearest neighbors using entry point to the layer.
• Connect the inserted point to them and shrink each of them to size 𝑀"#$.

HNSW - Insert

References

• Malkov, Yu A., and Dmitry A. Yashunin. "Efficient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs." IEEE transactions on pattern analysis and
machine intelligence 42, no. 4 (2018): 824-836.

• Blog article: https://www.pinecone.io/learn/series/faiss/hnsw/

