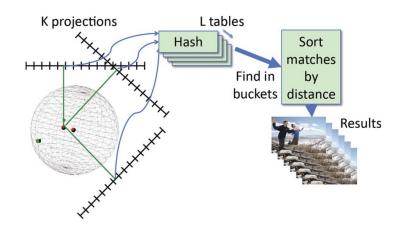
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

MULTI-PROBE LSH

Locality Sensitive Hashing



Given input data, radius r, approx factor c and confident δ

<u>Output</u>: if there is any point at distance $\leq r$ then w.p.

 $1 - \delta$ return one at distance $\leq cr$

<u>Algo:</u> Choose (k, L).

do L times

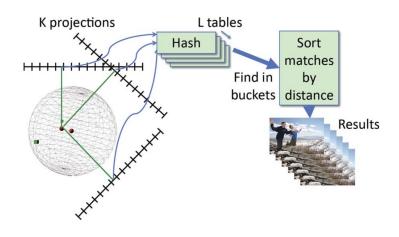
iid hash functions : $\{h_{i1} \dots h_{ik}\}$

Create hash table H_i by putting each x in bucket $H_i(x) = (h_{i1}(x), \dots h_{ik}(x))$

Store non-empty buckets in normal hash table

Picture courtesy Slaney et al.

Locality Sensitive Hashing



Given input data, radius r, approx factor c and confident δ

<u>Output:</u> if there is any point at distance $\leq r$ then w.p. $1 - \delta$ return one at distance $\leq cr$

<u>Query</u>: Find out all points in buckets $H_1(q) \dots H_L(q)$ and return ones that are $\leq cr$

Picture courtesy Slaney et al.

Drawbacks

- Trading space with time, strongly super-linear space
 Even in practice, typically 5-20 times more memory than dataset itself
- Space-time tradeoff mostly practical effective for medium-high dimensions, dense vectors
 - recent advances in ML about dense embeddings

Probing multiple times

- Idea: Can we reduce space while not affecting query time by too much?
 - need to hit buckets that have high probability of the containing the nearest neighbour

Entropy based LSH

- Assume that we know R(p,q) = distance from query q to nearest neighbour p
 - Buckets are a random partition of the data
 - The success probability of a bucket (i.e. of containing p) depends only on R(p,q)
 - Ideally, we can sort the buckets by this probability

Entropy based LSH

[Panigrahy' 06]

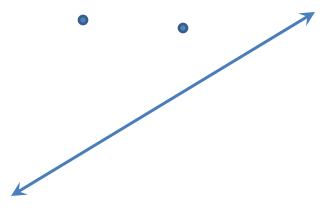
q

- Elegant way to sample from the success probability distribution
 - Perturb the query point repeatedly and probe
 - Buckets that have high probability should come up often
 - Theoretical guarantee

Multi-probe LSH

- Look at neighbouring buckets!
- Consider LSH for L2

$$h_{v,b}(q) = \left|\frac{q \cdot v + b}{w}\right|$$



Multi-probe LSH

- Suppose k = 3
- $H_1(q) = (5, 8, 3)$
- We consider buckets that differ in one position, two positions, ...

Formalizing

- $\Delta \in \{-1,0,+1\}^k$ be a "perturbation" vector
 - E.g. $\Delta = (-1, 0, +1, +1, 0 \dots -1)$
 - We get a new hash bucket by doing $H(q) + \Delta$
 - Say Δ has at most S nonzeros
 - Number of possible Δ is:
- Is there a natural way to order these buckets for searching?

Success Probability Estimation

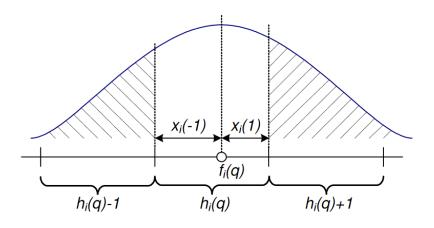


Image from Lv et al.

 $f_i(q) = q \cdot v_i + b_i$ be the projection of q

 $x_i(+1)$ and $x_i(-1)$ be the distance of the projection to the two boundaries

 $f_i(q) - f_i(p) \sim N(0, C|p - q|)$ by property of normal distribution

Success Probability Estimation

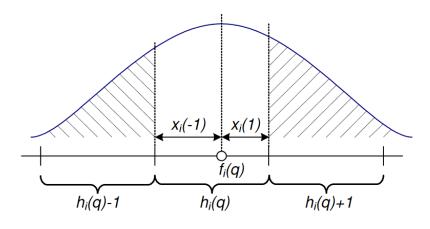


Image from Lv et al.

 $x_i(+1)$ and $x_i(-1)$ be the distance of the projection to the two boundaries

 $f_i(q) - f_i(p) \sim N(0, C|p - q|)$ by property of normal distribution

 $\Pr[h_i(p) = h_i(q) + 1] \approx \exp(-Cx_i(+1)^2)$

Ordering buckets

• If
$$\Delta = (\delta_1 \dots \delta_k)$$
 then
 $\Pr[H(p) = H(q) + \Delta] = \Pr \prod [h_i(q) = h_i(q) + \delta_i]$
 $\approx \prod \exp(-Cx_i(\delta_i)^2) = \exp\left(-C\sum x_i(\delta_i)^2\right)$

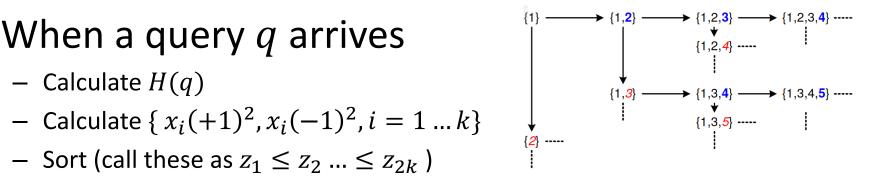
 $Ex: \Delta = (+1, 0, -1)$,

Ordering buckets

- Define $score(\Delta) = \sum x_i (\delta_i)^2$
- Lower the score, higher the probability of p being in the bucket
- Order the buckets by the score and search them in this order

Query directed ordering

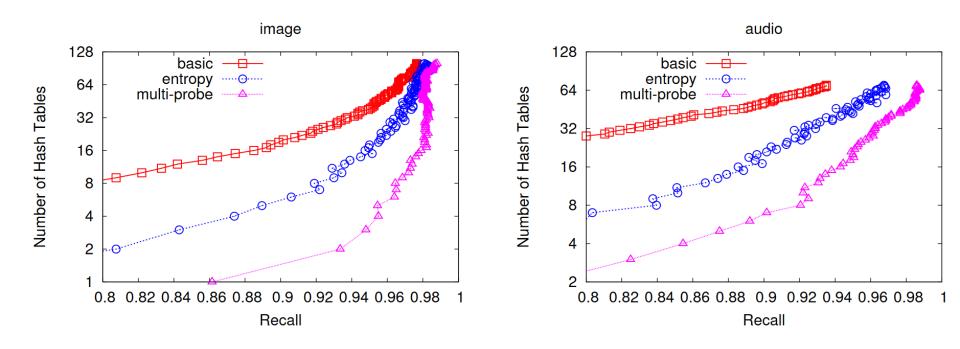
- When a query q arrives
- Start with $A = \{1\}$
- Repeatedly do either shift or expand
 - shift replace max(A) by 1+max(A)
 - expand adds 1+max(A) to A



Multiprobe LSH

- Using a min-heap at query time we can use the shift and expand operations to explore all buckets in order
 - Can optimize further
- In practice, will stop after a budget

Experiments



Implementation Notes

- FALCONN:
 - <u>https://github.com/FALCONN-LIB/FALCONN/wiki/How-to-Use-FALCONN</u>
 - Original authors: Andoni et al.
 - Implements LSH for cosine similarity.
 - Set #bits, #tables, #probes
 - Set the LSH family crosspolytope.
 - Build index and query

Implementation Notes

- FAISS:
 - <u>https://github.com/facebookresearch/faiss/wiki/</u>
 - L2 Distance based search.
 - Many indexes implemented Flat, IVF, IndexBinaryHash.
 - Another key idea is Product quantization:
 - Find k-centroids (e.g. using k-means clustering) expensive
 - Encode data as a binary vector by first splitting the vector dimensions and then encoding each dimension as sign of dot product with all the centroids.
 - Multi-probe can be used to reduce memory requirement by reducing k.
 - Not discussed here: Graph-based HNSW is also popular.

Summary

- While LSH is a powerful technique, there are few areas of concern, memory usage among them
- Entropy and Multi-probe LSH are elegant solutions that are useful in practice
 - Shown to be useful in practice, reduce space usage by a factor
 - also form part of the state-of-art LSH system
- Intuition based on idea of probing multiple buckets in a query-dependent manner

References:

- Primary references for this lecture
 - Multi-Probe LSH: Efficient Indexing for High Dimensional Similarity Search. By Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li, VLDB 2007
 - R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In Proc. of ACM-SIAM Symposium on Discrete Algorithms(SODA), 2006.