
CS60021: Scalable Data Mining

Similarity Search and Hashing

Sourangshu Bhattacharya

Finding Similar Items

Distance Measures
¡ Goal: Find near-neighbors in high-dim. space
– We formally define “near neighbors” as

points that are a “small distance” apart

• For each application, we first need to define what “distance”
means

• Today: Jaccard distance/similarity
– The Jaccard similarity of two sets is the size of their intersection divided

by the size of their union:
sim(C1, C2) = |C1ÇC2|/|C1ÈC2|

– Jaccard distance: d(C1, C2) = 1 - |C1ÇC2|/|C1ÈC2|

3

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

Task: Finding Similar Documents

4

3 Essential Steps for Similar Docs

5

The Big Picture

6

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min
Hashing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

Shingling
Step 1: Shingling: Convert documents to sets

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Documents as High-Dim Data

8

Define: Shingles

9

Represent Shingles

• To compress long shingles, we can hash them to (say) 4 bytes
• Represent a document by the set of hash values of its k-

shingles
– Idea: Two documents could (rarely) appear to have shingles in

common, when in fact only the hash-values were shared

• Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles: h(D1) = {1, 5, 7}

10

Similarity Metric for Shingles
• Document D1 is a set of its k-shingles C1=S(D1)
• Equivalently, each document is a

0/1 vector in the space of k-shingles
– Each unique shingle is a dimension
– Vectors are very sparse

• A natural similarity measure is the
Jaccard similarity:

 sim(D1, D2) = |C1ÇC2|/|C1ÈC2|

11

Working Assumption

12

Motivation for Minhash / LSH

13

MinHashing
Step 2: Minhashing: Convert large sets to

short signatures, while preserving similarity

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Encoding Sets as Bit Vectors

15

From Sets to Boolean Matrices
• Rows = elements (shingles)
• Columns = sets (documents)

– 1 in row e and column s if and only if e is a
member of s

– Column similarity is the Jaccard similarity of the
corresponding sets (rows with value 1)

– Typical matrix is sparse!

• Each document is a column:
– Example: sim(C1 ,C2) = ?

• Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

• d(C1,C2) = 1 – (Jaccard similarity) = 3/6

16

0101
0111

1001
1000

1010
1011
0111

Documents

Sh
in

gl
es

Outline: Finding Similar Columns
• So far:
– Documents ® Sets of shingles
– Represent sets as boolean vectors in a matrix

• Next goal: Find similar columns while
computing small signatures
– Similarity of columns == similarity of signatures

17

Outline: Finding Similar Columns
• Next Goal: Find similar columns, Small signatures
• Naïve approach:
– 1) Signatures of columns: small summaries of columns
– 2) Examine pairs of signatures to find similar columns

• Essential: Similarities of signatures and columns are related

– 3) Optional: Check that columns with similar signatures
are really similar

• Warnings:
– Comparing all pairs may take too much time: Job for LSH

• These methods can produce false negatives, and even false
positives (if the optional check is not made)

18

Hashing Columns (Signatures)

19

Min-Hashing

20

21

Min-Hashing

22

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1321

5

7

6

3

1

2

4

1312

4

5

1

6

7

3

2

1313

2nd element is the first to map
to a 1

3rd element of the permutation
is the first to map to a 1

0101

0101

1010

1010

1010
1001

0101

Input matrix (Shingles x Documents) Permutation p

The Min-Hash Property
• Choose a random permutation p
• Claim: Pr[hp(C1) = hp(C2)] = sim(C1, C2)
• Why?

– Let X be a doc (set of shingles), yÎ X is a shingle
– Then: Pr[p(y) = min(p(X))] = 1/|X|

• It is equally likely that any yÎ X is mapped to the min element
– Let y be s.t. p(y) = min(p(C1ÈC2))
– Then either: p(y) = min(p(C1)) if y Î C1 , or
 p(y) = min(p(C2)) if y Î C2

– So the prob. that both are true is the prob. y Î C1 Ç C2

– Pr[min(p(C1))=min(p(C2))]=|C1ÇC2|/|C1ÈC2|= sim(C1, C2)

23

01

10

00

11
00

00

One of the two
cols had to have
1 at position y

Four Types of Rows
• Given cols C1 and C2, rows may be classified as:

 C1 C2

 A 1 1
 B 1 0
 C 0 1
 D 0 0
– a = # rows of type A, etc.

• Note: sim(C1, C2) = a/(a +b +c)
• Then: Pr[h(C1) = h(C2)] = Sim(C1, C2)

– Look down the cols C1 and C2 until we see a 1
– If it’s a type-A row, then h(C1) = h(C2)

If a type-B or type-C row, then not

24

25

Similarity for Signatures

26

Min-Hashing Example

Similarities:
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1321

5

7

6

3

1

2

4

1312

4

5

1

6

7

3

2

1313

0101

0101

1010

1010

1010
1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation p

Min-Hash Signatures

27

Implementation Trick
• Permuting rows even once is prohibitive
• Row hashing!
– Pick K = 100 hash functions ki

– Ordering under ki gives a random row permutation!

• One-pass implementation
– For each column C and hash-func. ki keep a “slot” for the min-

hash value
– Initialize all sig(C)[i] = ¥
– Scan rows looking for 1s

• Suppose row j has 1 in column C
• Then for each ki :

– If ki(j) < sig(C)[i], then sig(C)[i] ¬ ki(j)

28

How to pick a random
hash function h(x)?
Universal hashing:
ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)

Locality Sensitive Hashing

ShinglingDocu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Min-Hash-
ing

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

LSH: First Cut

30

Candidates from Min-Hash

31

LSH for Min-Hash

32

Partition M into b Bands

33
Signature matrix M

r rows
per band

b bands

One
signature

Partition M into Bands

34

Matrix M

r rows b bands

Buckets
Columns 2 and 6
are probably identical
(candidate pair)

Columns 6 and 7 are
surely different.

Hashing Bands

35

Simplifying Assumption

36

Example of Bands

37

C1, C2 are 80% Similar
• Find pairs of ³ s=0.8 similarity, set b=20, r=5
• Assume: sim(C1, C2) = 0.8
– Since sim(C1, C2) ³ s, we want C1, C2 to be a candidate

pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

• Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

• Probability C1, C2 are not similar in all of the 20
bands: (1-0.328)20 = 0.00035
– i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)
– We would find 99.965% pairs of truly similar documents

38

C1, C2 are 30% Similar
• Find pairs of ³ s=0.8 similarity, set b=20, r=5
• Assume: sim(C1, C2) = 0.3
– Since sim(C1, C2) < s we want C1, C2 to hash to NO

common buckets (all bands should be different)
• Probability C1, C2 identical in one particular

band: (0.3)5 = 0.00243
• Probability C1, C2 identical in at least 1 of 20

bands: 1 - (1 - 0.00243)20 = 0.0474
– In other words, approximately 4.74% pairs of docs

with similarity 0.3% end up becoming candidate pairs
• They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s 39

LSH Involves a Tradeoff

40

Analysis of LSH – What We Want

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

Si
m

ila
rit

y
th

re
sh

ol
d
s

No chance
if t < s

Probability = 1
if t > s

41

What 1 Band of 1 Row Gives You

42

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

b bands, r rows/band

43

What b Bands of r Rows Gives You

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

44

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

Example: b = 20; r = 5
• Similarity threshold s
• Prob. that at least 1 band is identical:

45

s 1-(1-sr)b
.2 .006
.3 .047
.4 .186
.5 .470
.6 .802
.7 .975
.8 .9996

Picking r and b: The S-curve
• Picking r and b to get the best S-curve
– 50 hash-functions (r=5, b=10)

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

Pr
ob

. s
ha

rin
g

a
bu

ck
et

LSH Summary

47

Summary: 3 Steps
• Shingling: Convert documents to sets

– We used hashing to assign each shingle an ID

• Min-Hashing: Convert large sets to short signatures, while
preserving similarity
– We used similarity preserving hashing to generate signatures with

property Pr[hp(C1) = hp(C2)] = sim(C1, C2)
– We used hashing to get around generating random permutations

• Locality-Sensitive Hashing: Focus on pairs of signatures likely to
be from similar documents
– We used hashing to find candidate pairs of similarity ³ s

48

GENERALIZATION OF LSH

Locality sensitive hashing

• Originally defined in terms of a similarity function [C’02]

• Given universe 𝑈 and a similarity 𝑠: 𝑈×𝑈 → [0,1] , does there
exist a prob distribution over some hash family 𝐻 such that

50

Pr
!∈#

ℎ 𝑥 = ℎ 𝑦 = 𝑠(𝑥, 𝑦) 𝑠 𝑥, 𝑦 = 1 → 𝑥 = 𝑦
𝑠 𝑥, 𝑦 = 𝑠(𝑦, 𝑥)

Locality Sensitive Hashing

• Hash family 𝐻 is locality sensitive if

• Not clear such functions exist for all distance
functions

Pr ℎ 𝑥 = ℎ 𝑦 is high if 𝑥 is close to 𝑦

Pr ℎ 𝑥 = ℎ 𝑦 is low if 𝑥 is far from 𝑦

[Indyk Motwani]

Hamming distance

• Points are bit strings of length 𝑑

• 𝐻 𝑥, 𝑦 = | 𝑖, 𝑥* ≠ 𝑦* | 𝑆+ 𝑥, 𝑦 = 1 − + ,,-
.

• Define a hash function ℎ by sampling a set of
positions
– 𝑥 = 1011010001, 𝑦 = 0111010101
– 𝑆 = 1,5,7
– ℎ 𝑥 = 100, ℎ 𝑦 = 100

52

LSH for Hamming Distance

• The above hash family is locality sensitive, 𝑘 =
|𝑆|

53

Pr ℎ 𝑥 = ℎ 𝑦 = 1 −
𝐻 𝑥, 𝑦
𝑑

!

LSH for angle distance

• 𝑥, 𝑦 are unit norm vectors
• 𝑑 𝑥, 𝑦 = cos!" 𝑥 ⋅ 𝑦 = 𝜃
• 𝑆 𝑥, 𝑦 = 1 − 𝜃/𝜋

• Choose direction 𝑣 uniformly at random
– ℎ! 𝑥 = 𝑠𝑖𝑔𝑛 𝑣 ⋅ 𝑥
– Pr ℎ! 𝑥 = ℎ! 𝑦 = 1 − 𝜃/𝜋

54

Aside: picking a direction u.a.r.

• How to sample a vector 𝑥 ∈ 𝑅. , 𝑥 5 = 1 and the
direction is uniform among all possible directions

• Generate 𝑥 = 𝑥6, … . 𝑥. , 𝑥* ∼ 𝑁(0, 1) iid

• Normalize ,
, !

– By writing the pdf of the d-dimensional Gaussian in polar form, easy to
see that this is uniform direction on unit sphere

55

Which similarities admit LSH?
• There are various similarities and distance that are used in scientific

literature
– Encyclopedia of distances DL’11

• Will there be an LSH for each one of them?
– Similarity is LSHable if there exists an LSH for it

56

[slide courtesy R. Kumar]

LSHable similarities

Thm: S is LSHable à 1 – S is a metric

Fix hash function ℎ ∈ 𝐻 and define
Δ$ 𝐴, 𝐵 = [ℎ 𝐴 ≠ ℎ 𝐵]
1 − S A, B = Pr

$
[Δ$ 𝐴, 𝐵]

Also
Δ$ 𝐴, 𝐵 + Δ$ 𝐵, 𝐶 ≥ Δ$ 𝐴, 𝐶

57

𝑑 𝑥, 𝑦 = 0 → 𝑥 = 𝑦
𝑑 𝑥, 𝑦 = 𝑑 𝑦, 𝑥

𝑑 𝑥, 𝑦 + 𝑑 𝑦, 𝑧 ≥ 𝑑(𝑥, 𝑧)

Example of non-LSHable
similarities

• 𝑑 𝐴, 𝐵 = 1 − 𝑠(𝐴, 𝐵)

• Sorenson-Dice : 𝑠 𝐴, 𝐵 = % &∩(
&) (

– Ex: 𝐴 = 𝑎 , 𝐵 = 𝑏 , 𝐶 = {𝑎, 𝑏}

– 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐵, 𝐶 = 𝑠 𝐴, 𝐶 = %
*

• Overlap: 𝑠 𝐴, 𝐵 = &∩(
+,- & , (

– 𝑠 𝐴, 𝐵 = 0, 𝑠 𝐴, 𝐶 = 1 = 𝑠(𝐵, 𝐶)

58

Gap Definition of LSH

• A family is 𝑟, 𝑅, 𝑝, 𝑞 LSH if

Pr
$∈#

ℎ 𝑥 = ℎ 𝑦 ≥ 𝑝 𝑖𝑓 𝑑 𝑥, 𝑦 ≤ 𝑟

Pr
$∈#

ℎ 𝑥 = ℎ 𝑦 ≤ 𝑞 𝑖𝑓 𝑑 𝑥, 𝑦 ≥ 𝑅

Here 𝑝 > 𝑞.

59

IMRS’97, IM’98, GIM’99

Gap LSH

• All the previous constructions satisfy the gap definition

– Ex: for 𝐽𝑆 𝑆, 𝑇 = /∩0
/∪0

Hence is a 𝑟, 𝑅, 1 − 𝑟, 1 − 𝑅 LSH

60

𝐽𝐷 𝑆, 𝑇 ≤ 𝑟 → 𝐽𝑆 𝑆, 𝑇 ≥ 1 − 𝑟 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≥ 1 − 𝑟

𝐽𝐷 𝑆, 𝑇 ≥ 𝑅 → 𝐽𝑆 𝑆, 𝑇 ≤ 1 − 𝑅 → Pr ℎ 𝑆 = ℎ 𝑇 = 𝐽𝑆 𝑆, 𝑇 ≤ 1 − 𝑅

L2 norm

• 𝑑 𝑥, 𝑦 = √(∑" 𝑥" − 𝑦" #

• 𝑢 = random unit norm vector, 𝑤 ∈ 𝑅 parameter, 𝑏 ∼ 𝑈𝑛𝑖𝑓[0, 𝑤]

• ℎ 𝑥 = ⌊$⋅&'(
)

⌋

• If 𝑥 − 𝑦 # <
)
#
, Pr ℎ 𝑥 = ℎ 𝑦 ≥ *

+

• If 𝑥 − 𝑦 # > 4𝑤, Pr ℎ 𝑥 = ℎ 𝑦 ≤ *
,

61

Solving the near neighbour

• 𝑟, 𝑐 −near neighbour problem
– Given query point 𝑞, return all points 𝑝 such that
𝑑 𝑝, 𝑞 < 𝑟 and none such that 𝑑 𝑝, 𝑞 > 𝑐𝑟

– Solving this gives a subroutine to solve the “nearest
neighbour”, by building a data-structure for each 𝑟 , in
powers of (1 + 𝜖)

62

How to actually use it?

• Need to amplify the probability of collisions
for “near” points

63

Band construction

• AND-ing of LSH
– Define a composite function 𝐻 𝑥 = (ℎ2 𝑥 ,…ℎ3 𝑥)
– Pr 𝐻 𝑥 = 𝐻 𝑦 = Π, Pr ℎ4 𝑥 = ℎ4 𝑦 = Pr[

]
ℎ2 𝑥 =

ℎ2 𝑦
3

• OR-ing
– Create 𝐿 independent hash-tables for 𝐻2, 𝐻%, …𝐻5
– Given query 𝑥, search in ∪6 𝐻6(𝑥)

64

Example

65

S1 S2 S3 S4

A 1 0 1 0

B 1 0 0 1

C 0 1 0 1

D 0 1 0 1

E 0 1 0 1

F 1 0 1 0

G 1 0 1 0

S1 S2 S3 S3

h1 1 2 1 2

h2 2 1 3 1

S1 S2 S3 S3

h3 3 1 2 1

h4 1 3 2 2

Why is this better?

• Consider x, 𝑦 with Pr ℎ 𝑥 = ℎ 𝑦 = 1 − 𝑑(𝑥, 𝑦)

• Probability of not finding 𝑦 as one of the candidates in
∪6 𝐻6 𝑥

1 − 1 − 1 − 𝑑 3 5

66

Creating an LSH
• Query 𝑥
• If we have a (𝑟, 𝑐𝑟, 𝑝, 𝑞) LSH
• For any 𝑦, with 𝑥 − 𝑦 < 𝑟,

– Prob of 𝑦 as candidate in ∪- 𝐻- 𝑥 ≥ 1 − 1 − 𝑝! . ≥ 1 − *
/

• For any 𝑧, 𝑥 − 𝑧 > 𝑐𝑟,
– Prob of 𝑧 as candidate in any fixed 𝐻-(𝑥) ≤ 𝑞!

– Expected number of such 𝑧 ≤ 𝐿𝑞! ≤ 𝐿 = 𝑛0

– 𝜌 < 1

67

𝜌 = !"# $
!"# %

𝐿 = 𝑛& 𝑘 = log 𝑛 / log '
%

Runtime

• Space used = 𝑛*'0

• Query time = 𝑛0×(𝑘 + 𝑑) [time for k-hashes & brute force comparison]

• We can show that for Hamming, angle etc, 𝜌 ≈ *
1

– Can get 2-approx near neighbors with 𝑂(√𝑛) neighbour comparisons

68

LSH: theory vs practice

• In order to design LSH in practice, the theoretical parameter
values are only a guidance
– Typically need to search over the parameter space to find a good

operating point
– Data statistics can provide some guidance.

69

Summary
• Locality sensitive hashing is a powerful tool for near neighbour problems

• Trades off space with query time

• Practical for medium to large datasets with fairly large number of dimensions
– However, doesn’t really work very well for sparse, very very high dimensional datasets

• LSH and extensions are an area of active research and practice

70

71

References:

• Primary references for this lecture
• Modern Massive Datasets, Rajaraman, Leskovec, Ullman.
• Survey by Andoni et al. (CACM 2008) available at www.mit.edu/~andoni/LSH

http://www.mit.edu/~andoni/LSH

