# CS60021: Scalable Data Mining

Sourangshu Bhattacharya

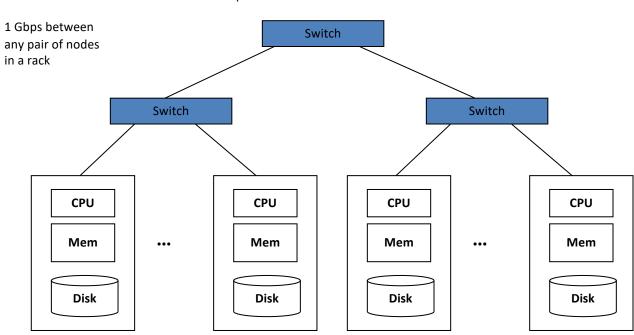
### In this Lecture:

- Outline:
  - What is Big Data?
  - Issues with Big Data
  - What is Hadoop?
  - What is Map Reduce ?
  - Example Map Reduce program.

#### **Motivation: Google Example**

- 20+ billion web pages x 20KB = 400+ TB
- 1 computer reads 30-35 MB/sec from disk
   ~4 months to read the data
- ~ 400 hard drives to store the data
- Takes even more to **do** something useful with the data!
- Today, a standard architecture for such problems is emerging:
  - Cluster of commodity Linux nodes
  - Commodity network (ethernet) to connect them

#### **Cluster Architecture**



2-10 Gbps backbone between racks

Each rack contains 16-64 nodes

# Large-scale Computing

 Large-scale computing for data mining problems on commodity hardware

#### • Challenges:

- How do you distribute computation?
- How can we make it easy to write distributed programs?
- Machines fail:
  - One server may stay up 3 years (1,000 days)
  - If you have 1,000 servers, expect to loose 1/day
  - People estimated Google has ~1M machines
    - 1,000 machines fail every day!

# **Big Data Challenges**

- Scalability: processing should scale with increase in data.
- Fault Tolerance: function in presence of hardware failure
- Cost Effective: should run on commodity hardware
- Ease of use: programmers do not write additional code for communication, fault tolerance, etc.
- Flexibility: able to process unstructured data
- Solution: Map Reduce !

### **Idea and Solution**

- Issue: Copying data over a network takes time
- Ideas:
  - Bring computation close to the data
  - Store files multiple times for reliability
- Map-reduce addresses these problems
  - Elegant way to work with big data
  - Storage Infrastructure File system
    - Google: GFS. Hadoop: HDFS
  - Programming model
    - Map-Reduce

# What is Hadoop ?

- A scalable fault-tolerant distributed system for data storage and processing.
- Core Hadoop:
  - Hadoop Distributed File System (HDFS)
  - Hadoop YARN: Job Scheduling and Cluster Resource Management
  - Hadoop Map Reduce: Framework for distributed data processing.
- Open Source system with large community support. https://hadoop.apache.org/

## What is Map Reduce ?

- Method for distributing a task across multiple servers.
- Proposed by Dean and Ghemawat, 2004.
- Consists of two developer created phases:
  - Map
  - Reduce
- In between Map and Reduce is the Shuffle and Sort phase.
- User is responsible for casting the problem into map reduce framework.
- Multiple map-reduce jobs can be "chained".

# Programming Model: MapReduce

#### Warm-up task:

- We have a huge text document
- Count the number of times each distinct word appears in the file

#### • Sample application:

Analyze web server logs to find popular URLs

### Task: Word Count

#### Case 1:

- File too large for memory, but all <word, count> pairs fit in memory

#### Case 2:

- Count occurrences of words:
  - words(doc.txt) | sort | uniq -c
    - where words takes a file and outputs the words in it, one per a line
- Case 2 captures the essence of MapReduce
  - Great thing is that it is naturally parallelizable

### MapReduce: Overview

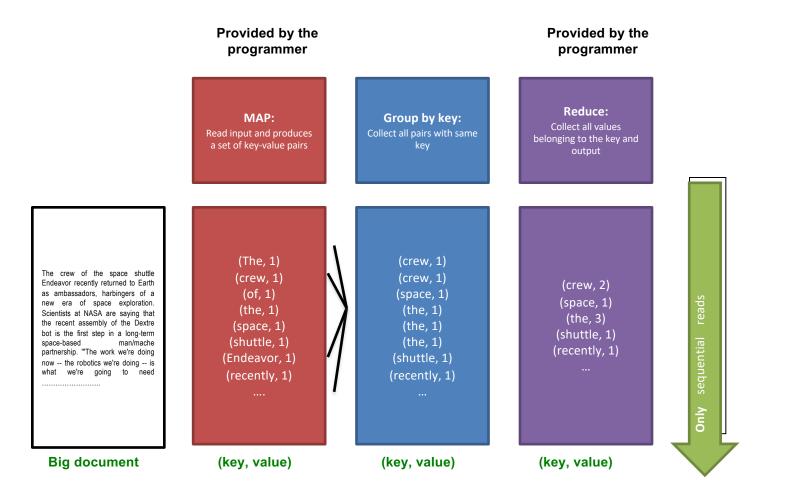
- Sequentially read a lot of data
- Map:
  - Extract something you care about
- Group by key: Sort and Shuffle
- Reduce:
  - Aggregate, summarize, filter or transform
- Write the result

Outline stays the same, **Map** and **Reduce** change to fit the problem

### More Specifically

- Input: a set of key-value pairs
- Programmer specifies two methods:
  - Map(k, v)  $\rightarrow$  <k', v'>\*
    - Takes a key-value pair and outputs a set of key-value pairs
      - E.g., key is the filename, value is a single line in the file
    - There is one Map call for every (k,v) pair
  - Reduce(k',  $\langle v' \rangle^*$ )  $\rightarrow \langle k', v'' \rangle^*$ 
    - All values v' with same key k' are reduced together and processed in v' order
    - There is one Reduce function call per unique key k'

### MapReduce: Word Counting



#### Word Count Using MapReduce

#### map(key, value):

```
// key: document name; value: text of the
   document
   for each word w in value:
    emit(w, 1)
```

#### reduce(key, values):

```
// key: a word; value: an iterator over
counts
    result = 0
    for each count v in values:
        result += v
    emit(key, result)
```



### Map Phase

- User writes the mapper method.
- Input is an unstructured record:
  - E.g. A row of RDBMS table,
  - A line of a text file, etc
- Output is a set of records of the form: <key, value>
  - Both key and value can be anything, e.g. text, number, etc.
  - E.g. for row of RDBMS table: <column id, value>
  - Line of text file: <word, count>

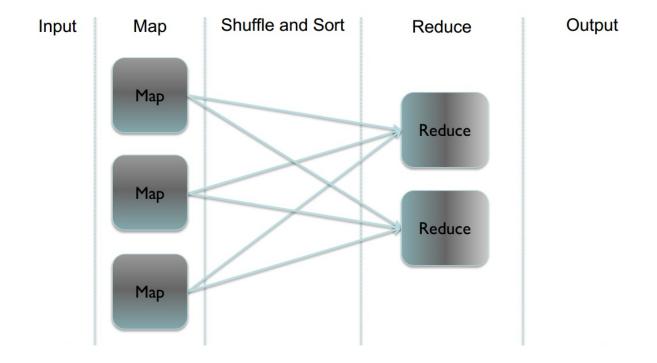
### Shuffle/Sort phase

- Shuffle phase ensures that all the mapper output records with the same key value, goes to the same reducer.
- Sort ensures that among the records received at each reducer, records with same key arrives together.

### **Reduce phase**

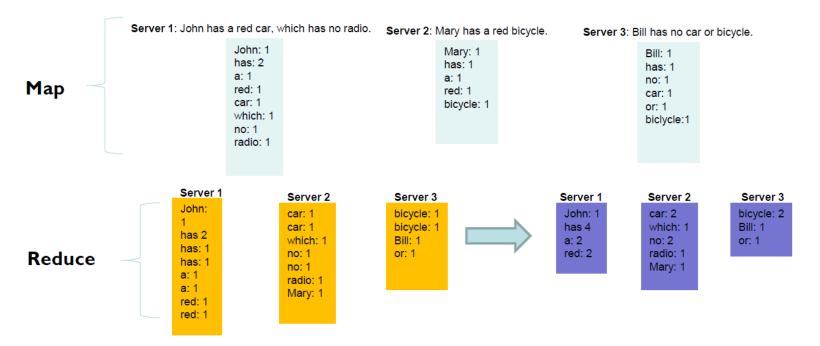
- Reducer is a user defined function which processes mapper output records with some of the keys output by mapper.
- Input is of the form <key, value>
  - All records having same key arrive together.
- Output is a set of records of the form <key, value>
  - Key is not important



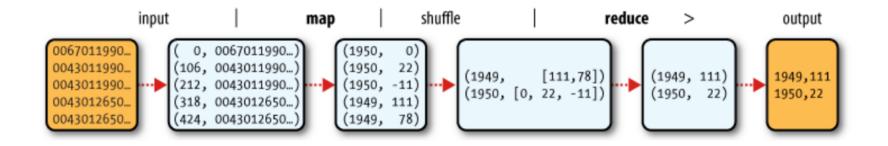


#### Example

Word Count: Count the total no. of occurrences of each word



#### Map Reduce - Example



What was the max/min temperature for the last century?

# Hadoop Map Reduce

#### **D** Provides:

- □ Automatic parallelization and Distribution
- □ Fault Tolerance
- □ Methods for interfacing with HDFS for colocation of computation and storage of output.
- Status and Monitoring tools
- API in Java
- □ Ability to define the mapper and reducer in many languages through Hadoop streaming.

# **HDFS**

# What's HDFS

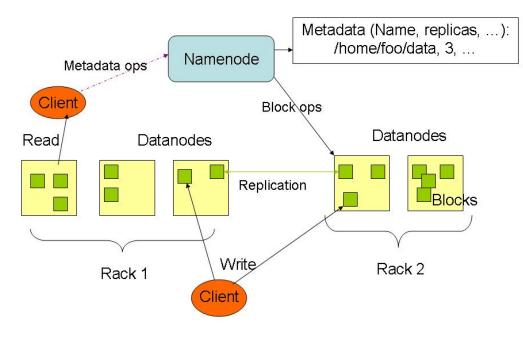
- HDFS is a distributed file system that is fault tolerant, scalable and extremely easy to expand.
- HDFS is the primary distributed storage for Hadoop applications.
- HDFS provides interfaces for applications to move themselves closer to data.
- HDFS is designed to 'just work', however a working knowledge helps in diagnostics and improvements.

# **Components of HDFS**

There are two (and a half) types of machines in a HDFS cluster

- <u>NameNode</u> :- is the heart of an HDFS filesystem, it maintains and manages the file system metadata. E.g; what blocks make up a file, and on which datanodes those blocks are stored.
- <u>DataNode</u> :- where HDFS stores the actual data, there are usually quite a few of these.

# **HDFS** Architecture

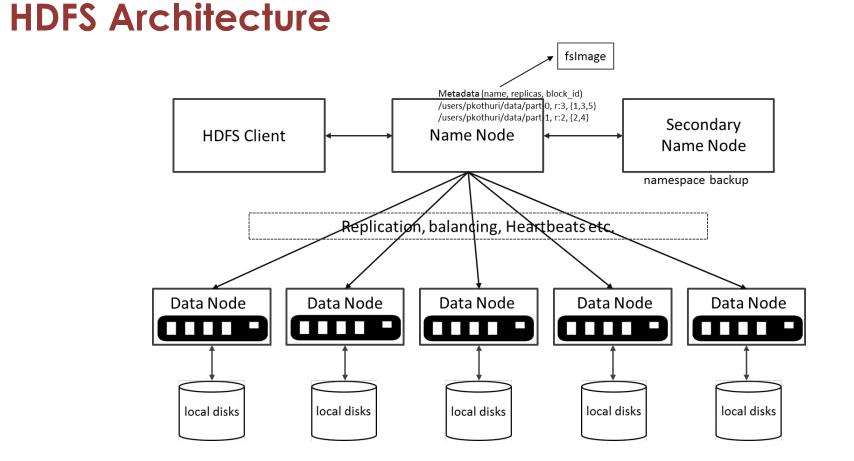


# HDFS

- Design Assumptions
  - Hardware failure is the norm.
  - Streaming data access.
  - Write once, read many times.
  - High throughput, not low latency.
  - Large files.
- Characteristics:
  - Performs best with modest number of large files
  - Optimized for streaming reads
  - Layer on top of native file system.

# HDFS

- Data is organized into file and directories.
- Files are divided into blocks and distributed to nodes.
- Block placement is known at the time of read
  - Computation moved to same node.
- Replication is used for:
  - Speed
  - Fault tolerance
  - Self healing.



# DataNode

#### A Block Server

- Stores data in the local file system (e.g. ext3)
- Stores meta-data of a block (e.g. CRC)
- Serves data and meta-data to Clients

#### Block Report

- Periodically sends a report of all existing blocks to the NameNode

#### Facilitates Pipelining of Data

- Forwards data to other specified DataNodes

# NameNode Metadata

#### Meta-data in Memory

- The entire metadata is in main memory
- No demand paging of meta-data

#### Types of Metadata

- List of files
- List of Blocks for each file
- List of DataNodes for each block
- File attributes, e.g creation time, replication factor

#### A Transaction Log

- Records file creations, file deletions. etc

# HDFS – User Commands (dfs)

List directory contents

hdfs dfs -ls hdfs dfs -ls / hdfs dfs -ls -R /var

### Display the disk space used by files

hdfs dfs -du /hbase/data/hbase/namespace/ hdfs dfs -du -h /hbase/data/hbase/namespace/ hdfs dfs -du -s /hbase/data/hbase/namespace/

# HDFS – User Commands (dfs)

Copy data to HDFS

hdfs dfs -mkdir tdata hdfs dfs -ls hdfs dfs -copyFromLocal tutorials/data/geneva.csv tdata hdfs dfs -ls -R

### Copy the file back to local filesystem

cd tutorials/data/ hdfs dfs -copyToLocal tdata/geneva.csv geneva.csv.hdfs md5sum geneva.csv geneva.csv.hdfs

# HDFS – User Commands (acls)

### List acl for a file

hdfs dfs -getfacl tdata/geneva.csv

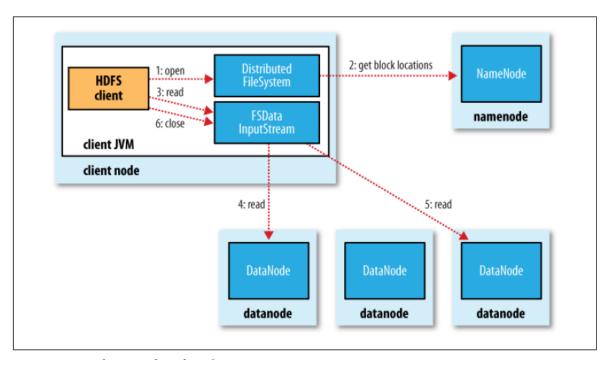
List the file statistics – (%r – replication factor)

hdfs dfs -stat "%r" tdata/geneva.csv

### Write to hdfs reading from stdin

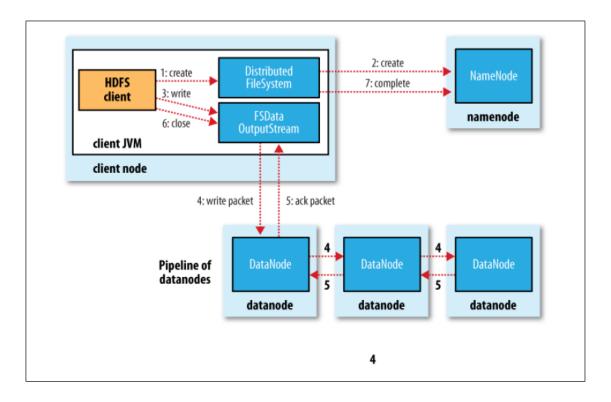
```
echo "blah blah blah" | hdfs dfs -put - tdataset/tfile.txt
hdfs dfs -ls -R
hdfs dfs -cat tdataset/tfile.txt
```

# HDFS read client



Source: Hadoop: The Definitive Guide

### **HDFS write Client**



Source: Hadoop: The Definitive Guide

## **Block Placement**

### Current Strategy

- -- One replica on local node
- -- Second replica on a remote rack
- -- Third replica on same remote rack
- -- Additional replicas are randomly placed
- Clients read from nearest replica
- Would like to make this policy pluggable

### **NameNode Failure**

- A single point of failure
- Transaction Log stored in multiple directories
  - A directory on the local file system
  - A directory on a remote file system (NFS/CIFS)

# **Data Pipelining**

- Client retrieves a list of DataNodes on which to place replicas of a block
- Client writes block to the first DataNode
- The first DataNode forwards the data to the next DataNode in the Pipeline
- Usually, when all replicas are written, the Client moves on to write the next block in file

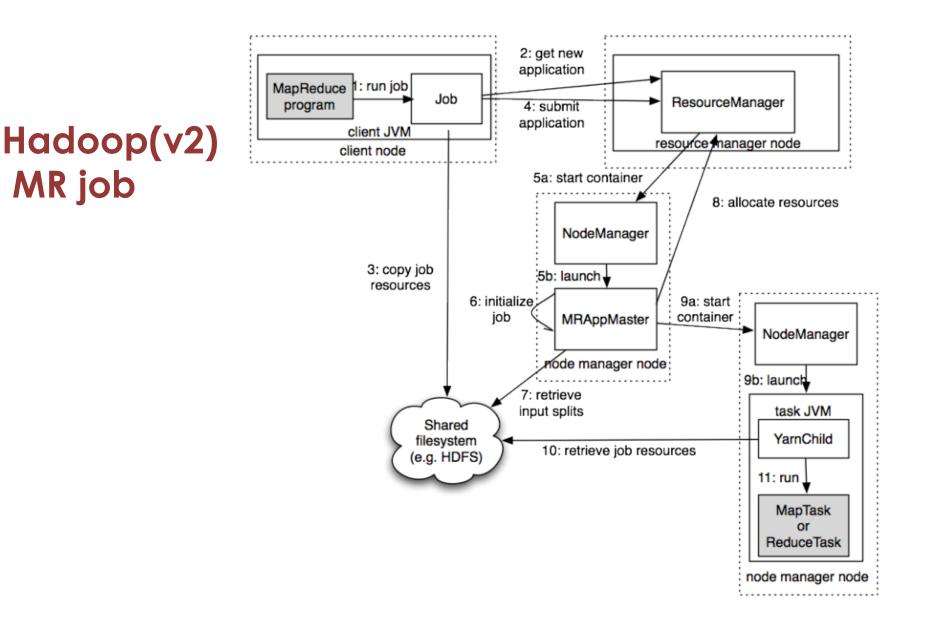
## **Conclusion:**

- We have seen:
  - The structure of HDFS.
  - The shell commands.
  - The architecture of HDFS system.
  - Internal functioning of HDFS.

### **MAPREDUCE INTERNALS**

## Hadoop Map Reduce

- Provides:
  - Automatic parallelization and Distribution
  - Fault Tolerance
  - Methods for interfacing with HDFS for colocation of computation and storage of output.
  - Status and Monitoring tools
  - API in Java
  - Ability to define the mapper and reducer in many languages through Hadoop streaming.



Source: Hadoop: The Definitive Guide

### Wordcount program

import java.io.IOException; import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;

- import org.apache.hadoop.fs.Path;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.mapreduce.Job;
- import org.apache.hadoop.mapreduce.Mapper;
- import org.apache.hadoop.mapreduce.Reducer;
- import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
- import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

### Wordcount program - Main

```
public class WordCount {
```

```
public static void main(String[] args) throws Exception {
```

```
Configuration conf = new Configuration();
```

```
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
```

```
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
} }
```

### Wordcount program - Mapper

```
public static class TokenizerMapper extends Mapper<Object, Text, Text,
IntWritable>{
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();
```

```
public void map(Object key, Text value, Context context )
throws IOException, InterruptedException {
   StringTokenizer itr = new StringTokenizer(value.toString());
   while (itr.hasMoreTokens()) {
      word.set(itr.nextToken()); context.write(word, one);
   }
}
```

### Wordcount program - Reducer

```
public static class IntSumReducer extends
Reducer<Text,IntWritable,Text,IntWritable> {
  private IntWritable result = new IntWritable();
```

}

```
public void reduce(Text key, Iterable<IntWritable> values, Context context
)
throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
        sum += val.get();
    }
    result.set(sum);
    context.write(key, result);
}
```

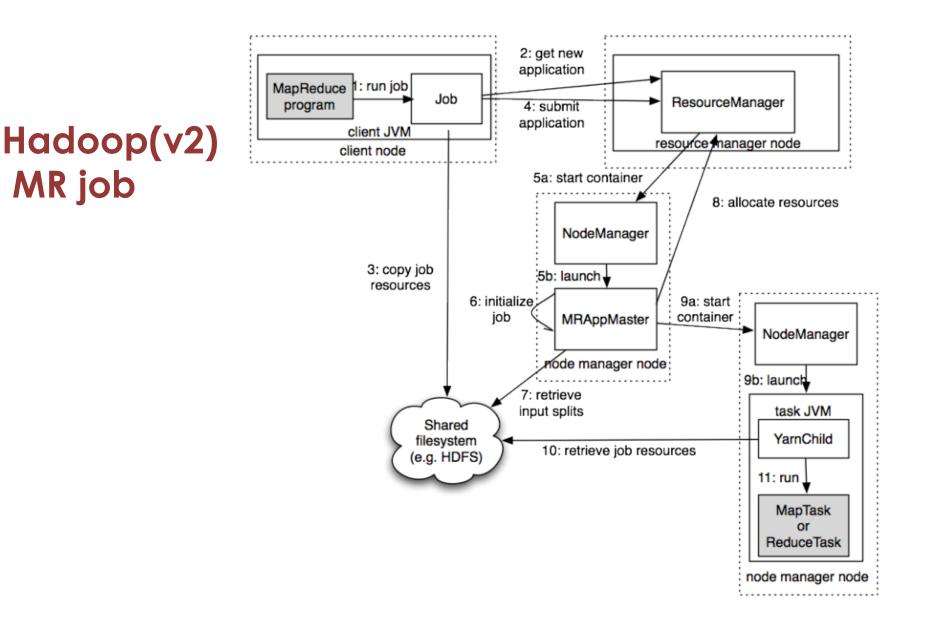
### Wordcount program - running

export JAVA HOME=[ Java home directory ]

bin/hadoop com.sun.tools.javac.Main WordCount.java

jar cf wc.jar WordCount\*.class

bin/hadoop jar wc.jar WordCount [Input path] [Output path]



Source: Hadoop: The Definitive Guide

# Wordcount in python

#### Mapper.py

```
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # split the line into words
    words = line.split()
    # increase counters
    for word in words:
        # write the results to STDOUT (standard output);
        # what we output here will be the input for the
        # Reduce step, i.e. the input for reducer.py
        #
        # tab-delimited; the trivial word count is 1
        print '%s\t%s' % (word, 1)
```

# Wordcount in python

#!/usr/bin/env python

from operator import itemgetter
import sys

```
# maps words to their counts
word2count = {}
```

#### Reducer.py

```
# input comes from STDIN
for line in sys.stdin:
    # remove leading and trailing whitespace
    line = line.strip()
    # parse the input we got from mapper.py
    word, count = line.split('\t', 1)
    # convert count (currently a string) to int
    try :
        count = int(count)
        word2count[word] = word2count.get(word, 0) + count
    except ValueError:
        # count was not a number, so silently
        # ignore/discard this line
        pass
# sort the words lexigraphically;
#
# this step is NOT required, we just do it so that our
# final output will look more like the official Hadoop
# word count examples
sorted word2count = sorted(word2count.items(), key=itemgetter(0))
# write the results to STDOUT (standard output)
for word, count in sorted word2count:
    print '%s\t%s'% (word, count)
```

### **Execution code**

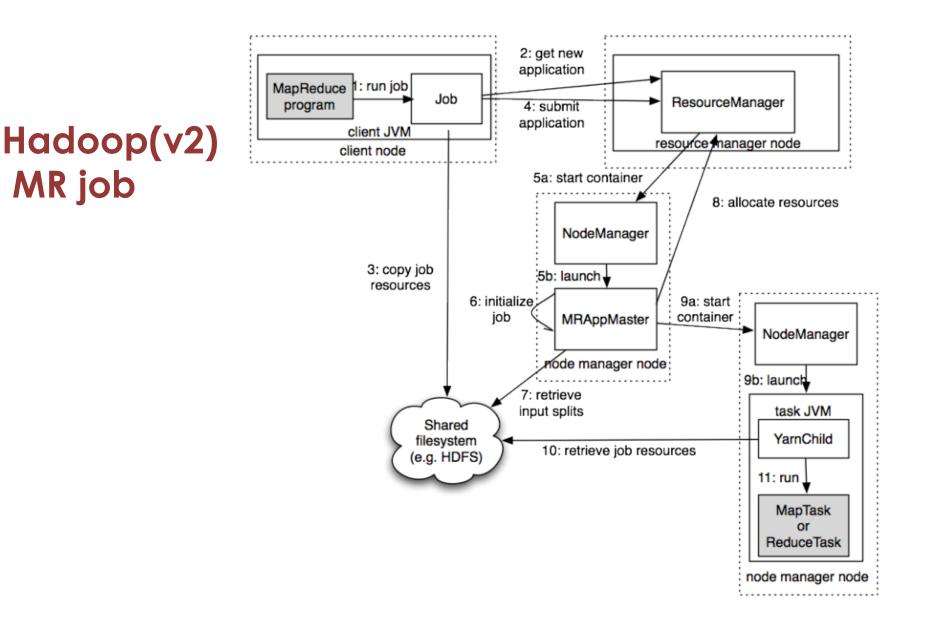
bin/hadoop dfs -ls

bin/hadoop dfs -copyFromLocal example example

bin/hadoop jar contrib/streaming/hadoop-0.19.2-streaming.jar -file wordcount-py.example/mapper.py -mapper wordcountpy.example/mapper.py -file wordcount-py.example/reducer.py -reducer wordcount-py.example/reducer.py -input example -output java-output

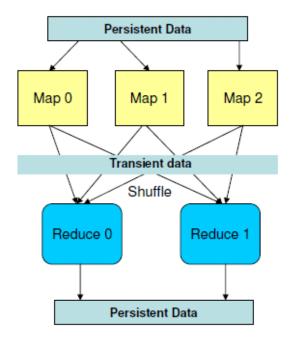
bin/hadoop dfs -cat java-output/part-00000

bin/hadoop dfs -copyToLocal java-output/part-00000 java-output-local

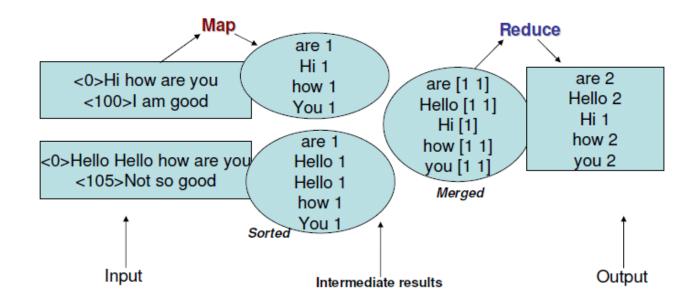


Source: Hadoop: The Definitive Guide

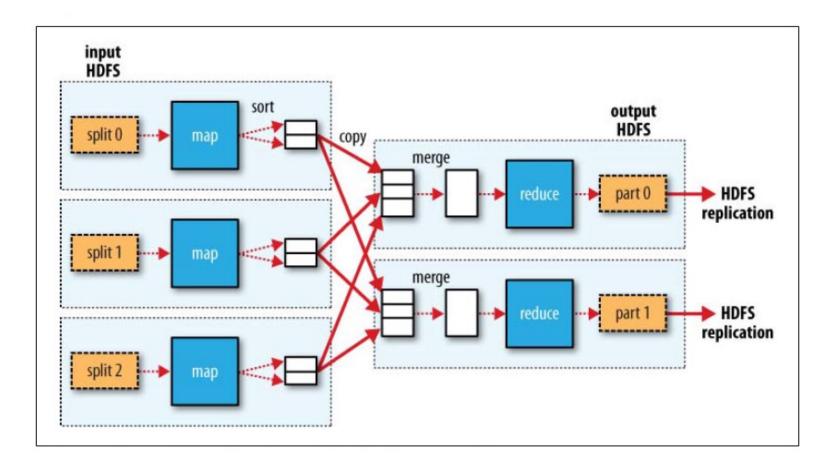
### Map Reduce Data Flow



### Data: Stream of keys and values

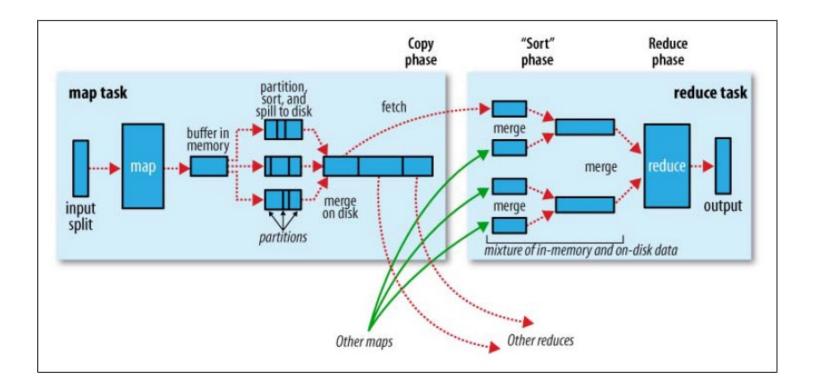


### Hadoop MR Data Flow



Source: Hadoop: The Definitive Guide

# Shuffle and sort

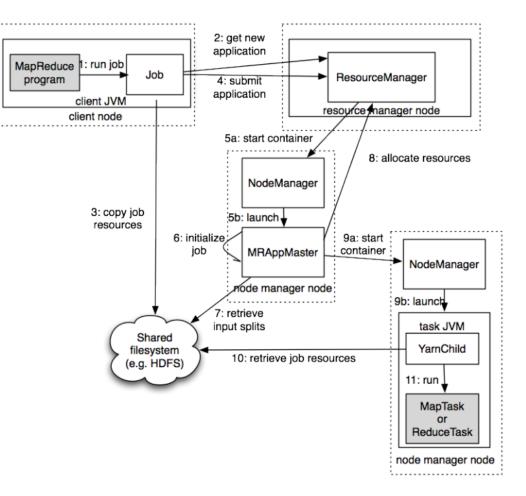


Source: Hadoop: The Definitive Guide

## **Data Flow**

- Input and final output are stored on a distributed file system (FS):
  - Scheduler tries to schedule map tasks "close" to physical storage location of input data
- Intermediate results are stored on local FS of Map workers.
- Output of Reduce workers are stored on a distributed file system.
- Output is often input to another MapReduce task





Source: Hadoop: The Definitive Guide

## Fault tolerance

□Comes from scalability and cost effectiveness

### HDFS:

Replication

### □ Map Reduce

□ Restarting failed tasks: map and reduce

□Writing map output to FS

□ Minimizes re-computation

## **Coordination: Master**

- Master node takes care of coordination:
  - Task status: (idle, in-progress, completed)
  - Idle tasks get scheduled as workers become available
  - When a map task completes, it sends the master the location and sizes of its R intermediate files, one for each reducer
  - Master pushes this info to reducers
- Master pings workers periodically to detect failures

### Failures

### Task failure

Task has failed - report error to node manager, appmaster, client.

Task not responsive, JVM failure – Node manager restarts tasks.

### Application Master failure

Application master sends heartbeats to resource manager.

□ If not received, the resource manager retrieves job history of the run tasks.

### □ Node manager failure

# **Dealing with Failures**

- Map worker failure
  - Map tasks completed or in-progress at worker are reset to idle
  - Reduce workers are notified when task is rescheduled on another worker

### Reduce worker failure

- Only in-progress tasks are reset to idle
- Reduce task is restarted

### Master failure

MapReduce task is aborted and client is notified

# How many Map and Reduce jobs?

- *M* map tasks, *R* reduce tasks
- Rule of a thumb:
  - Make M much larger than the number of nodes in the cluster
  - One DFS chunk per map is common
  - Improves dynamic load balancing and speeds up recovery from worker failures
- Usually R is smaller than M
  - Because output is spread across R files

# **Task Granularity & Pipelining**

- Fine granularity tasks: map tasks >> machines
  - Minimizes time for fault recovery
  - Can do pipeline shuffling with map execution
  - Better dynamic load balancing

| Process      | Time>                           |          |          |  |          |          |          |            |      |       |  |
|--------------|---------------------------------|----------|----------|--|----------|----------|----------|------------|------|-------|--|
| User Program | MapReduce()                     |          |          |  | wait     |          |          |            |      |       |  |
| Master       | Assign tasks to worker machines |          |          |  |          |          |          |            |      |       |  |
| Worker 1     |                                 | Map 1    | Мар 3    |  |          |          |          |            |      |       |  |
| Worker 2     |                                 | Map 2    |          |  |          |          |          |            |      |       |  |
| Worker 3     |                                 |          | Read 1.1 |  | Read 1.3 |          | Read 1.2 |            | Redu | ce 1  |  |
| Worker 4     |                                 | Read 2.1 |          |  |          | Read 2.2 | Read     | d 2.3 Redu |      | uce 2 |  |

# **Refinements: Backup Tasks**

### Problem

- Slow workers significantly lengthen the job completion time:
  - Other jobs on the machine
  - Bad disks
  - Weird things

### Solution

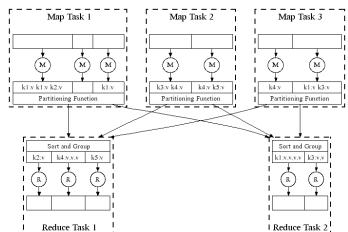
- Near end of phase, spawn backup copies of tasks
  - Whichever one finishes first "wins"

### • Effect

- Dramatically shortens job completion time

## **Refinement: Combiners**

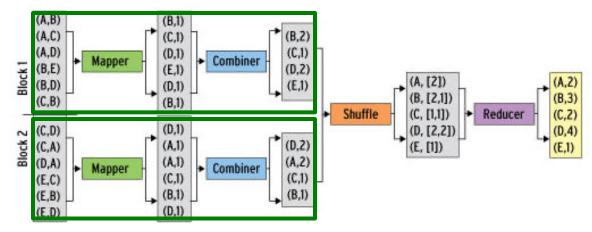
- Often a Map task will produce many pairs of the form (k,v1), (k,v2),
   ... for the same key k
  - E.g., popular words in the word count example
- Can save network time by pre-aggregating values in the mapper:
  - combine(k, list(v<sub>1</sub>))  $\rightarrow$  v<sub>2</sub>
  - Combiner is usually same as the reduce function
- Works only if reduce
   function is commutative and associative



## **Refinement: Combiners**

### • Back to our word counting example:

 Combiner combines the values of all keys of a single mapper (single machine):



- Much less data needs to be copied and shuffled!

## **Refinement: Partition Function**

### • Want to control how keys get partitioned

- Inputs to map tasks are created by contiguous splits of input file
- Reduce needs to ensure that records with the same intermediate key end up at the same worker
- System uses a default partition function:
  - hash(key) mod R
- Sometimes useful to override the hash function:
  - E.g., hash(hostname(URL)) mod R ensures URLs from a host end up in the same output file

### **References:**

- Jure Leskovec, Anand Rajaraman, Jeff Ullman. Mining of Massive Datasets. 2<sup>nd</sup> edition. - Cambridge University Press. <u>http://www.mmds.org/</u>
- Tom White. Hadoop: The definitive Guide. Oreilly Press.