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Distributed gradient descent

@ Define loss(x) = Z/-’L ZIEC, li(x) + AQ(x), where [;(x) = I(x, u;, v;)
@ The gradient (in case of differentiable loss):

m
Vioss(x) =Y V(> (%)) + AQ(x
j=1 i€Cj

@ Compute V/i(x) = Z,-ecj VIi(x) on the j computer. Communicate
to central computer.
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Distributed gradient descent

@ Compute Vioss(x) = Z}L VIi(x) + Q(x) at the central computer.

@ The gradient descent update: x*1 = xk — aVloss(x).

@ o chosen by a line search algorithm (distributed).

@ For non-differentiable loss functions, we can use distributed
sub-gradient descent algorithm.

o Slow for most practical problems.
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ADMM Precusors

Dual Ascent

@ Convex equality constrained problem:
mXin f(x)
subjectto: Ax = b

@ Lagrangian: L(x,y) = f(x) + yT(Ax — b)
@ Dual function: g(y) = infxL(x, y)

@ Dual problem: max, g(y)

@ Final solution: x* = argmin, L(x, y)

Sourangshu Bhattacharya (IITKGP) ADMM 6/59



ADMM Precusors

Dual Ascent

o Gradient descent for dual problem: y**' = y¥ + okV «g(y*)
® V,kg(y¥) = AXx — b, where X = argmin, L(x, y¥)
@ Dual ascent algorithm:

xK+1 = argmin, L(x, y¥)

yk+1 _ yk + Ozk(AXk—H o b)

@ Assumptions:

e L(x,yk)is strictly convex. Else, the first step can have multiple
solutions.
e L(x,y")is bounded below.
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ADMM Precusors

Dual Decomposition

@ Suppose f is separable:
f(x) = fi(xq) +---+f(xn), X =(x1,..., XN)

@ Lis separablein x: L(x,y) = Li(x1,y) + -+ Ln(xn, ¥) — y'b,
where Li(x;, y) = fi() + y T Aix;
@ x minimization splits into N separate problems:

k+1 _ i k
x; T =argmin, Li(X;, y")
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ADMM Precusors

Dual Decomposition

@ Dual decomposition:

k1 — argminXI,L,-(x,-,yk), i=1,....N

i
N
yk+1 _ yk + ak(z AiXi o b)
i=1

@ Distributed solution:

e Scatter y* to individual nodes
e Compute x; in the i node (distributed step)
e Gather A;x; from the i node

@ All drawbacks of dual ascent exist

Sourangshu Bhattacharya (IITKGP) ADMM 9/59



Method of Multipliers

@ Make dual ascent work under more general conditions
@ Use augmented Lagrangian:

Ly(x.y) = f(x) + y(Ax = b) + £[|Ax — b]3
@ Method of multipliers:

X1 = argmin, L,(x, y¥)

yk+1 _ yk +p(AXk+1 o b)
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Methods of Multipliers

@ Optimality conditions (for differentiable f):
o Primal feasibility: Ax* —b =0
e Dual feasibility: Vi(x*) + ATy* =0

@ Since x¥*1 minimizes L,(x, y¥)
0 = VyL,(xk+1 y¥)
= V(') + AT(y* + p(AX*TT — b))
— fo(xk+1) + ATyk—H

@ Dual update y*+' = yk + p(Axkt1 — b) makes (xk*1, yk*1) dual
feasible

@ Primal feasibility is achieved in the limit: (Ax**" — b) — 0
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ADMM Derivations and Observations

Alternating direction method of multipliers

@ Problem with applying standard method of multipliers for
distributed optimization:

e there is no problem decomposition even if f is separable.
e due to square term 4|/ Ax + Bz — c||3
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ADMM Derivations and Observations

Alternating direction method of multipliers
@ ADMM problem:

min 1(x) + g(2)
subject to: Ax + Bz=c¢
@ Lagrangian:

Ly(x,z.y) = f(x)+9(2) + y(Ax + Bz — ¢) + §||Ax + Bz — c|3
o ADMM:
x**1 = argmin, L,(x, z, y¥)
21 = argmin, L, (x**1, z, y¥)
yk+1 — yk +p(AXk+1 + sz+1 _ C)
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ADMM Derivations and Observations

Alternating direction method of multipliers

@ Problem with applying standard method of multipliers for
distributed optimization:

e there is no problem decomposition even if f is separable.
e due to square term 5|/ Ax + Bz — c||3

@ The above technique reduces to method of multipliers if we do
joint minimization of x and z

@ Since we split the joint x, z minimization step, the problem can be
decomposed.
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Derivations and Observations
ADMM Optimality conditions

@ Optimality conditions (differentiable case):
o Primal feasibility: Ax + Bz—c=0
e Dual feasibility: Vf(x) + ATy =0and Vg(z) + BTy =0

@ Since k! minimizes L,(xk*1, z, y¥):
0=vg(zZK") + BTy¥ + pBT(AxK+1 4+ BZK+1 —¢)
— vg(2") 4+ BTyt

@ So, the dual variable update satisfies the second dual feasibility
constraint.

@ Primal feasibility and first dual feasibility are satisfied
asymptotically.
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Derivations and Observations
ADMM Optimality conditions

@ Primal residual: r* = AxK + Bz — ¢
@ Since x**! minimizes L,(x, z¥, y¥):

0 = V(x4 ATyk 4 pAT(AXKHT 4 BZK — ¢)

— VXK 4 AT (YK 4+ prf T 4 pB(ZK — Z¢H)
— V(K ¢ ATyRT L pATB(ZK — Zk+H1)
or,
pATB(ZK — ZKH1) = (xkH1) 4 ATk

@ Hence, s"! = pATB(zK — zK*+1) can be thought as dual residual.
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ADMM Derivations and Observations

Step size selection

@ Combine the linear and quadratic terms
o Primal feasibility: Ax + Bz—c=0
e Dual feasibility: Vf(x) + ATy =0and Vg(z) + BTy =0

@ Since k! minimizes L,(xk*1, z, y¥):
0=vg(zZK") + BTy¥ + pBT(AxK+1 4+ BZK+1 —¢)
— vg(2") 4+ BTyt

@ So, the dual variable update satisfies the second dual feasibility
constraint.

@ Primal feasibility and first dual feasibility are satisfied
asymptotically.
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Derivations and Observations
ADMM with scaled dual variables

@ letr=Ax+Bz—-c
e Lagrangian: L,(x,z,y) = f(x) + g(z) + yTr+ §||r|2

P P 1 1
yTr+ §HfH§ = §|!f+ ;J/HS - 2pr}’!1§

4 2 P 2
=—|lr+ull5 - =|lu
5lr+ul — Slul3

@ where u = %y are scaled dual variables.

@ ADMM updates:
xk+1 = argmin, f(x) + gﬂAx + BZX — ¢+ uk|?
ZK1 = argmin,g(z) + gquk“ + Bz —c+ uk|?

uk+1 — Uk + (Axk—H + sz+1 _ C)
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Convergence of ADMM

@ Assumption 1: Functions f : R” —+ R and g : R” — R are closed,
proper and convex.

e Same as assuming epif = {(x,t) € R" x R|f(x) < t} is closed and
convex.

@ Assumption 2: The unaugmented Lagrangian Ly(x, y,z) has a
saddle point (xx, zx, y*):

Lo(x*,zx,y) < Lo(xx,z%, yx) < Lo(x, Z, y*)
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Convergence of ADMM

@ Primal residual: r=Ax+ Bz ——c¢
@ Optimal objective: p* = infy ,{f(x) + g(z)|Ax + Bz = ¢}
@ Convergence results:

Primal residual convergence: rX — 0 as k — oo
Dual residual convergence: s — 0 as k — oo
Obijective convergence: f(x) + g(z) — p* as k — oo
Dual variable convergence: y¥ — y* as k — oo
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Stopping criteria

@ Stop when primal and dual residuals small:
[l < " and [|s¥]l2 < ¢

Hence, ||r¥||, — 0 and ||s¥||s — 0 as k — oo
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ADMM Convergence

Observations

@ x- update requires solving an optimization problem
. B . 2
min f(x) + 2||AX v||5

with, v = BzK — ¢ + u¥
@ Similarly for z-update.
@ Sometimes has a closed form.
@ ADMM is a meta optimization algorithm.
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ADMM Convergence

Proximal Operator

@ x-update when A=l
xT = argmin, (f(x) + g||x — VHS = prox ,(v)
@ Some special cases:

f = I¢ (Indicator fn of C) , x™ = M¢(v) (projecction on to C)
f=Allll1,x" = Sa(v)

where, Sa(v) = (v —a)y — (—v —a)4.
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Distributed Applications

Decomposition of optimization

@ Convex equality constrained problem:
mXin f(x)
subjectto: Ax =b
@ If f is separable:
f(X) = f1(X1)+ st fN(XN)7 X = (X17"'7XN)

@ Ais conformably block separable; i.e. AT Ais block diagonal.
@ Then, x-update splits into N parallel updates of x;
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Distributed Applications Distributed Consensus

Consensus Optimization

@ Problem:

@ ADMM form:

N
min 21: fi(x)
=

st.xi—z=0,i=1,....N

@ Augmented lagrangian:

N

Lot X 2.y) = S (6(x) + ¥ (6 = 2) + 5 1xi = 23)
i=1
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Distributed Applications Distributed Consensus

Consensus Optimization

@ ADMM algorithm:

X[ = argmin, (f(x;) + yfT (xi — 2) + gHXi - 23
1 1
k+1 _ 72( k+1 4 2k
z = Xi Y )
NS p
vt =y ol = 2

1

@ Final solution is zX.
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Distributed Applications Distributed Consensus

Consensus Optimization
@ z-update can be written as:

k+1 _ gk+1 k41

V4

@ Averaging the y-updates:

}—/ _ y +p( k+1 zk+1)
@ Substituting first into second: y**' = 0. Hence z* = x*.
@ Revised algorithm:

xK1 = argmin, (fi(x) +yf T — X+ £ ||X: —x¥%)

Yt =y 4 o = X

@ Final solution is z*.
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Distributed Applications Distributed loss minimization

Loss minimization
@ Problem:
min I(Ax — b) + r(x)
@ Partition A and b by rows:
Aq b

where, A; € R™*™M and b; € R™
@ ADMM formulation:

N
min Z /,'(A,'X,' - b,) + I’(Z)
i=1

Xi,Z “
st:xi—z=0,i=1,...,N
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Distributed Applications Distributed loss minimization

Loss minimization

@ ADMM formulation:
N
TEE?Z/,'(A/X/—b,')-f—f(Z) st:xi—z=0,i=1,....N

@ Augmented Lagrangian:

N N
Lo(Xi, 2, u) = l(Aix; — bi) + r(2) + gZ(HZ = X+ uil| — [|uill®)
i=1 i=1

@ ADMM solution:
X[t = argmin, (h(Aix; — by) + £||x,- -2+ uf3)

1
2K = argmin,(r(z 'OZHZ XK uf)3)
i=1

Ukt = g xfT -

Sourangshu Bhattacharya (IITKGP) ADMM 33/59



Outline

© Aoum

9 Distributed Applications

@ Weighted Parameter Averaging

Sourangshu Bhattacharya (IITKGP) ADMM 34/59



Distributed Applications Weighted Parameter Averaging

Support Vector Machines

@ Training dataset: S = {(x;,y;):i=1,---, ML,
yie {—1,+1},x; € R9}.

@ Predictor function: y; = sign(w’x;)

@ Linear SVM problem:

mv;nAHwH%+ Z/oss (X, 1)),

@ Hinge loss: loss(w; (x;, y;)) = max(0,1 — yw'x;)
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Distributed Support Vector Machines

@ Training dataset partitioned into M partitions (Sp,, m=1,..., M).
@ Each partition has L datapoints: Sm = {(Xpm, Ymr)}, 1 =1,..., L.
@ Each partition can be processed locally on a single computer.

@ Distributed SVM training problem:

M L
‘m:?z Z Z loss(Wm; (Xmi, Ymi)) + r(2)
m=1 |=1

stwp,—z=0m=1,--- M, I=1,... L
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Parameter Averaging

@ Parameter averaging, also called “mixture weights” was proposed
for logistic regression’.

@ Widely used as a federated learning technique.
@ Locally learn SVM parameters on Sp;:

L
N .1
W = argmin - ,Z; I0SS(W; Xy, Yit) + AlW[2, m=1,....M

@ The final SVM parameter is given by:

1M
Wpa = I Z Wm
m=1

1 McDonald, Ryan, Keith Hall, and Gideon Mann. "Distributed training strategies for the structured perceptron." NAACL HLT
2010.
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Distributed Applications Weighted Parameter Averaging

Problem with Parameter Averaging

PA with varying number of partitions - Toy dataset.
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Weighted Parameter Averaging

@ Final hypothesis is a weighted sum of the parameters w,.

M
W= Z BmWm
m=1

@ How to get B ?
@ Notation: 8 = [B1,---, Bum]", W = [Wy,--- , W]

w=Wg3
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Weighted Parameter Averaging

@ Find the optimal set of weights 8 which attains the lowest
regularized hinge loss:

M L
1
: 2
nﬁ;,lﬁn A|WB||= + ML Z Zﬁmi

m=1 i=1
subject to: y,i(BTWTX,,)) > 1 —&mi, Viom
Emizoa vm = 17"'an I = 17"‘7L

e W is a pre-computed parameter.
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Dual Weighted Parameter Averaging

@ Lagrangian:
1
L(B, &mis rmis pimi) = N[WB® + 5 - ;gmf

+ D ami(Ymi(BTWT Xmi) =1+ &mi) = D pmimi

m,i

@ Differentiating w.r.t. 8 and equating to zero:

B= (WTW Z amiymW Xm/)

m,i
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Dual Weighted Parameter Averaging

@ Similarly, differentiating w.r.t. £,; and equating to zero:

1
0<0¢m1§m

@ Substituting B in L:
main E(a Z Omj — 4)\ Z Z AmiQm /ym/ym/ (WTW)_1WTXm//')
m,i m'.j

1 :
subjectto:Ogam,-gm Yietl,---,Lmed,--- M

@ SVM with x,,; projected using symmetric projection
H=WW'W)wrT,
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Distributed Weighted Parameter Averaging

@ Distributed version of primal weighted parameter averaging:

;r;lg M n; /21 loss( W’)’m, Xt Ymi) + 1(B)

st. Ym—B=0, m=1,--- M,

e r(8) = A|Wg|]2, ym weights for m' computer, B consensus
weight.
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Distributed Weighted Parameter Averaging

@ Distributed algorithm using ADMM:

At = argmin(loss(Ay) + (p/2)lly — BF +uk|3)

B = argmin(r(8) + (Mp/2)|18 1 —uk|[3)

ulcH — Uk ket gkt

@ up, are the scaled Lagrange multipliers, ¥ = 1, 2%21 Ym and
G 1M
u=my Zm:1 Um.
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Toy Dataset - PA and WPA

PA (left) and WPA (right) with varying number of partitions - Toy
dataset.
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Toy Dataset - PA and WPA

Accuracy of PA and WPA with varying number of partitions - Toy

dataset.
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Distributed Applications Results - Weighted PA

Toy Dataset - PA and WPA

Bias (E[||w — w*||]) of PA, WPA and DSVM with varying number of
partitions - Toy dataset.

Sample size | Mean bias(PA) | Mean bias(DWPA) | Mean bias(DSVM)
3000 0.868332 0.260716 0.307931
6000 0.807217 0.063649 0.168727
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Distributed Applications Results - Weighted PA

Real World Datasets

Epsilon (2000 features, 6000 datapoints) test set accuracy with varying
number of partitions.
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Distributed Applications Results - Weighted PA

Real World Datasets

Gisette (5000 features, 6000 datapoints) test set accuracy with varying
number of partitions.
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Distributed Applications Results - Weighted PA

Real World Datasets

Real-sim (20000 features, 3000 datapoints) test set accuracy with
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Distributed Applications Results - Weighted PA

Real World Datasets

Convergence of test accuracy with iterations (200 partitions).
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Real World Datasets

Convergence of primal residual with iterations (200 partitions).
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Distributed Applications Results - Weighted PA

Fully distributed SVM

@ SVM optimization problem:

m|n—||W|| + CZZ&M

j=1 n=1
st yp(WiXp+b)>1—¢gpn Vjiedn=1,.. N,
§n>0,Vedn=1,... N,

@ Node j has a copy of w;, b;. Distributed formulation:

QZHW/HZvLJCZZﬁ,n

{W/b// =1 n—=
s.t..yjn(wjxj,,+b)21—§jn, Vied,n=1,....N;
§n>0,Vjed,n=1,... N
W = w;, Vj,i € B,
54/59
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Fully distributed SVM
o Using v; = [w]B]", X; = [[X1, ..., xn]7 1] and
Y= d/ag([yn,-u,y/N])
min Z Vi) +JCZZ§,,7
{ngjnwjl}z =1 n—1
s.t.: Y/-X/-vj >1-¢,vjed
§>0,vjed
Vi = wji, Vi = wji, Yj,i € B,

@ Surrogate augmented Lagrangian:

J
L({v}, {Ej} {wiit, {ovjk}) = Z Vi) —l—JCZme

j=1 n=1

+ZZ afi (v — wi) + afp(vi — wj))
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Fully distributed SVM

@ ADMM based algorithm:

VLY = argming, £y LYY (G {0l {ali))
{1} = argming L{v} T (EF ), i) o))

H—1 _ t+1 H—‘I
Qjiq ]I1 + 77(‘/ Wi )

H—1 _ t+1 t+1
Yo = j/2+77( —Vvi)
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Distributed Applications Fully Distributed SVM

Conclusions

@ Good approximation to training SVM and other classifiers on Big
data platforms is an open problem - tradeoff between computation
and quality.

@ Training SVM in a projected space can lead to efficient and
accurate algorithms and bounds on stability w.r.t. generalization
error.

@ Future directions - applicability to:

o Kernels methods.
e Other supervised learning algorithms.
o Unsupervised learning ??
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Distributed Applications Fully Distributed SVM

Thank you !

Questions ?
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