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Distributed gradient descent

Define loss(x) =
∑m

j=1
∑

i∈Cj
li(x) +λΩ(x), where li(x) = l(x,ui , vi)

The gradient (in case of differentiable loss):

∇loss(x) =
m∑

j=1

∇(
∑
i∈Cj

li(x)) + λΩ(x)

Compute ∇lj(x) =
∑

i∈Cj
∇li(x) on the j th computer. Communicate

to central computer.
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Distributed gradient descent

Compute ∇loss(x) =
∑m

j=1∇lj(x) + Ω(x) at the central computer.

The gradient descent update: xk+1 = xk − α∇loss(x).
α chosen by a line search algorithm (distributed).
For non-differentiable loss functions, we can use distributed
sub-gradient descent algorithm.

Slow for most practical problems.
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ADMM Precusors
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ADMM Precusors

Dual Ascent

Convex equality constrained problem:

min
x

f (x)

subject to: Ax = b

Lagrangian: L(x , y) = f (x) + yT (Ax − b)

Dual function: g(y) = infxL(x , y)

Dual problem: maxy g(y)

Final solution: x∗ = argminxL(x , y)
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ADMM Precusors

Dual Ascent

Gradient descent for dual problem: yk+1 = yk + αk∇yk g(yk )

∇yk g(yk ) = Ax̃ − b, where x̃ = argminxL(x , yk )

Dual ascent algorithm:

xk+1 = argminxL(x , yk )

yk+1 = yk + αk (Axk+1 − b)

Assumptions:
L(x , yk ) is strictly convex. Else, the first step can have multiple
solutions.
L(x , yk ) is bounded below.
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ADMM Precusors

Dual Decomposition

Suppose f is separable:

f (x) = f1(x1) + · · ·+ fN(xN), x = (x1, . . . , xN)

L is separable in x : L(x , y) = L1(x1, y) + · · ·+ LN(xN , y)− yT b,
where Li(xi , y) = fi(xi) + yT Aixi

x minimization splits into N separate problems:

xk+1
i = argminxi

Li(xi , yk )
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ADMM Precusors

Dual Decomposition

Dual decomposition:

xk+1
i = argminxi

Li(xi , yk ), i = 1, . . . ,N

yk+1 = yk + αk (
N∑

i=1

Aixi − b)

Distributed solution:
Scatter yk to individual nodes
Compute xi in the i th node (distributed step)
Gather Aixi from the i th node

All drawbacks of dual ascent exist
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ADMM Precusors

Method of Multipliers

Make dual ascent work under more general conditions
Use augmented Lagrangian:

Lρ(x , y) = f (x) + yT (Ax − b) +
ρ

2
‖Ax − b‖22

Method of multipliers:

xk+1 = argminxLρ(x , yk )

yk+1 = yk + ρ(Axk+1 − b)
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ADMM Precusors

Methods of Multipliers

Optimality conditions (for differentiable f ):
Primal feasibility: Ax∗ − b = 0
Dual feasibility: ∇f (x∗) + AT y∗ = 0

Since xk+1 minimizes Lρ(x , yk )

0 = ∇xLρ(xk+1, yk )

= ∇x f (xk+1) + AT (yk + ρ(Axk+1 − b))

= ∇x f (xk+1) + AT yk+1

Dual update yk+1 = yk + ρ(Axk+1 − b) makes (xk+1, yk+1) dual
feasible
Primal feasibility is achieved in the limit: (Axk+1 − b)→ 0
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ADMM Derivations and Observations
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ADMM Derivations and Observations

Alternating direction method of multipliers

Problem with applying standard method of multipliers for
distributed optimization:

there is no problem decomposition even if f is separable.
due to square term ρ

2‖Ax + Bz − c‖2
2
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ADMM Derivations and Observations

Alternating direction method of multipliers

ADMM problem:

min
x ,z

f (x) + g(z)

subject to: Ax + Bz = c

Lagrangian:
Lρ(x , z, y) = f (x) + g(z) + yT (Ax + Bz − c) + ρ

2‖Ax + Bz − c‖22
ADMM:

xk+1 = argminxLρ(x , zk , yk )

zk+1 = argminzLρ(xk+1, z, yk )

yk+1 = yk + ρ(Axk+1 + Bzk+1 − c)
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ADMM Derivations and Observations

Alternating direction method of multipliers

Problem with applying standard method of multipliers for
distributed optimization:

there is no problem decomposition even if f is separable.
due to square term ρ

2‖Ax + Bz − c‖2
2

The above technique reduces to method of multipliers if we do
joint minimization of x and z
Since we split the joint x , z minimization step, the problem can be
decomposed.
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ADMM Derivations and Observations

ADMM Optimality conditions

Optimality conditions (differentiable case):
Primal feasibility: Ax + Bz − c = 0
Dual feasibility: ∇f (x) + AT y = 0 and ∇g(z) + BT y = 0

Since zk+1 minimizes Lρ(xk+1, z, yk ):

0 = ∇g(zk+1) + BT yk + ρBT (Axk+1 + Bzk+1 − c)

= ∇g(zk+1) + BT yk+1

So, the dual variable update satisfies the second dual feasibility
constraint.
Primal feasibility and first dual feasibility are satisfied
asymptotically.
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ADMM Derivations and Observations

ADMM Optimality conditions

Primal residual: r k = Axk + Bzk − c
Since xk+1 minimizes Lρ(x , zk , yk ):

0 = ∇f (xk+1) + AT yk + ρAT (Axk+1 + Bzk − c)

= ∇f (xk+1) + AT (yk + ρr k+1 + ρB(zk − zk+1)

= ∇f (xk+1) + AT yk+1 + ρAT B(zk − zk+1)

or,

ρAT B(zk − zk+1) = ∇f (xk+1) + AT yk+1

Hence, sk+1 = ρAT B(zk − zk+1) can be thought as dual residual.
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ADMM Derivations and Observations

Step size selection

Combine the linear and quadratic terms
Primal feasibility: Ax + Bz − c = 0
Dual feasibility: ∇f (x) + AT y = 0 and ∇g(z) + BT y = 0

Since zk+1 minimizes Lρ(xk+1, z, yk ):

0 = ∇g(zk+1) + BT yk + ρBT (Axk+1 + Bzk+1 − c)

= ∇g(zk+1) + BT yk+1

So, the dual variable update satisfies the second dual feasibility
constraint.
Primal feasibility and first dual feasibility are satisfied
asymptotically.
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ADMM Derivations and Observations

ADMM with scaled dual variables

Let r = Ax + Bz − c
Lagrangian: Lρ(x , z, y) = f (x) + g(z) + yT r + ρ

2‖r‖
2
2

yT r +
ρ

2
‖r‖22 =

ρ

2
‖r +

1
ρ

y‖22 −
1
2ρ
‖y‖22

=
ρ

2
‖r + u‖22 −

ρ

2
‖u‖22

where u = 1
ρy are scaled dual variables.

ADMM updates:

xk+1 = argminx f (x) +
ρ

2
‖Ax + Bzk − c + uk‖2

zk+1 = argminzg(z) +
ρ

2
‖Axk+1 + Bz − c + uk‖2

uk+1 = uk + (Axk+1 + Bzk+1 − c)
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ADMM Convergence
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ADMM Convergence

Convergence of ADMM

Assumption 1: Functions f : Rn → R and g : Rm → R are closed,
proper and convex.

Same as assuming epif = {(x , t) ∈ Rn × R|f (x) ≤ t} is closed and
convex.

Assumption 2: The unaugmented Lagrangian L0(x , y , z) has a
saddle point (x∗, z∗, y∗):

L0(x∗, z∗, y) ≤ L0(x∗, z∗, y∗) ≤ L0(x , z, y∗)
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ADMM Convergence

Convergence of ADMM

Primal residual: r = Ax + Bz − c
Optimal objective: p∗ = infx ,z{f (x) + g(z)|Ax + Bz = c}
Convergence results:

Primal residual convergence: r k → 0 as k →∞
Dual residual convergence: sk → 0 as k →∞
Objective convergence: f (x) + g(z)→ p∗ as k →∞
Dual variable convergence: yk → y∗ as k →∞
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ADMM Convergence

Stopping criteria

Stop when primal and dual residuals small:

‖r k‖2 ≤ εpri and ‖sk‖2 ≤ εdual

Hence, ‖r k‖2 → 0 and ‖sk‖2 → 0 as k →∞
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ADMM Convergence

Observations

x- update requires solving an optimization problem

min
x

f (x) +
ρ

2
‖Ax − v‖22

with, v = Bzk − c + uk

Similarly for z-update.
Sometimes has a closed form.
ADMM is a meta optimization algorithm.
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ADMM Convergence

Proximal Operator

x-update when A=I

x+ = argminx (f (x) +
ρ

2
‖x − v‖22 = proxf ,ρ(v)

Some special cases:

f = IC (Indicator fn of C) , x+ = ΠC(v) (projecction on to C)
f = λ‖.‖1,x+ = Sλ

ρ
(v)

where, Sa(v) = (v − a)+ − (−v − a)+.
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Distributed Applications

Decomposition of optimization

Convex equality constrained problem:

min
x

f (x)

subject to: Ax = b

If f is separable:

f (x) = f1(x1) + · · ·+ fN(xN), x = (x1, . . . , xN)

A is conformably block separable; i.e. AT A is block diagonal.
Then, x-update splits into N parallel updates of xi
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Distributed Applications Distributed Consensus
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Distributed Applications Distributed Consensus

Consensus Optimization

Problem:

min
x

f (x) =
N∑

i=1

fi(x)

ADMM form:

min
xi ,z

N∑
i=1

fi(xi)

s.t. xi − z = 0, i = 1, . . . ,N

Augmented lagrangian:

Lρ(x1, . . . , xN , z, y) =
N∑

i=1

(fi(xi) + yT
i (xi − z) +

ρ

2
‖xi − z‖22)
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Distributed Applications Distributed Consensus

Consensus Optimization

ADMM algorithm:

xk+1
i = argminxi

(fi(xi) + ykT
i (xi − zk ) +

ρ

2
‖xi − zk‖22)

zk+1 =
1
N

N∑
i=1

(xk+1
i +

1
ρ

yk
i )

yk+1
i = yk

i + ρ(xk+1
i − zk+1)

Final solution is zk .
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Distributed Applications Distributed Consensus

Consensus Optimization

z-update can be written as:

zk+1 = x̄k+1 +
1
ρ

ȳk+1

Averaging the y -updates:

ȳk+1 = ȳk + ρ(x̄k+1 − zk+1)

Substituting first into second: ȳk+1 = 0. Hence zk = x̄k .
Revised algorithm:

xk+1
i = argminxi

(fi(xi) + ykT
i (xi − x̄k ) +

ρ

2
‖xi − x̄k‖22)

yk+1
i = yk

i + ρ(xk+1
i − x̄k+1)

Final solution is zk .
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Distributed Applications Distributed loss minimization
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Distributed Applications Distributed loss minimization

Loss minimization

Problem:

min
x

l(Ax − b) + r(x)

Partition A and b by rows:

A =

 A1
...

AN

 , b =

 b1
...

bN

 ,
where, Ai ∈ Rmi×m and bi ∈ Rmi

ADMM formulation:

min
xi ,z

N∑
i=1

li(Aixi − bi) + r(z)

s.t.: xi − z = 0, i = 1, . . . ,N
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Distributed Applications Distributed loss minimization

Loss minimization

ADMM formulation:

min
xi ,z

N∑
i=1

li(Aixi − bi) + r(z) s.t.: xi − z = 0, i = 1, . . . ,N

Augmented Lagrangian:

Lρ(xi , z,ui ) =
N∑

i=1

li (Aixi − bi ) + r(z) +
ρ

2

N∑
i=1

(‖z − xi + ui‖2
2 − ‖ui‖2)

ADMM solution:

xk+1
i = argminxi

(li(Aixi − bi) +
ρ

2
‖xi − zk + uk

i ‖22)

zk+1 = argminz(r(z) +
ρ

2

N∑
i=1

‖z − xk+1
i + uk

i ‖22)

uk+1
i = uk

i + xk+1
i − zk+1
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Distributed Applications Weighted Parameter Averaging
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Distributed Applications Weighted Parameter Averaging

Support Vector Machines

Training dataset: S = {(xi , yi) : i = 1, · · · ,ML,
yi ∈ {−1,+1},xi ∈ Rd}.
Predictor function: yi = sign(wT xi)

Linear SVM problem:

min
w
λ‖w‖22 +

1
m

ML∑
i=1

loss(w; (xi , yi)),

Hinge loss: loss(w; (xi , yi)) = max(0,1− yiwT xi)
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Distributed Applications Weighted Parameter Averaging

Distributed Support Vector Machines

Training dataset partitioned into M partitions (Sm, m = 1, . . . ,M).
Each partition has L datapoints: Sm = {(xml , yml)}, l = 1, . . . ,L.
Each partition can be processed locally on a single computer.
Distributed SVM training problem:

min
wm,z

M∑
m=1

L∑
l=1

loss(wm; (xml , yml)) + r(z)

s.t.wm − z = 0,m = 1, · · · ,M, l = 1, . . . ,L
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Distributed Applications Weighted Parameter Averaging

Parameter Averaging

Parameter averaging, also called “mixture weights” was proposed
for logistic regression1.
Widely used as a federated learning technique.
Locally learn SVM parameters on Sm:

ŵm = argmin
w

1
L

L∑
l=1

loss(w; xml , yml) + λ‖w‖2 , m = 1, . . . ,M

The final SVM parameter is given by:

wPA =
1
M

M∑
m=1

ŵm

1
McDonald, Ryan, Keith Hall, and Gideon Mann. "Distributed training strategies for the structured perceptron." NAACL HLT

2010.
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Distributed Applications Weighted Parameter Averaging

Problem with Parameter Averaging

PA with varying number of partitions - Toy dataset.
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Distributed Applications Weighted Parameter Averaging

Weighted Parameter Averaging

Final hypothesis is a weighted sum of the parameters ŵm.

w =
M∑

m=1

βmŵm

How to get βm ?
Notation: β = [β1, · · · , βM ]T , Ŵ = [ŵ1, · · · , ŵM ]

w = Ŵβ
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Distributed Applications Weighted Parameter Averaging

Weighted Parameter Averaging

Find the optimal set of weights β which attains the lowest
regularized hinge loss:

min
β,ξ

λ‖Ŵβ‖2 +
1

ML

M∑
m=1

L∑
i=1

ξmi

subject to: ymi(β
T ŴT xmi) ≥ 1− ξmi , ∀i ,m

ξmi ≥ 0, ∀m = 1, . . . ,M, i = 1, . . . ,L

Ŵ is a pre-computed parameter.
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Distributed Applications Weighted Parameter Averaging

Dual Weighted Parameter Averaging

Lagrangian:

L(β, ξmi , αmi , µmi) = λ‖Ŵβ‖2 +
1

ML

∑
m,i

ξmi

+
∑
m,i

αmi(ymi(β
T W T xmi)− 1 + ξmi)−

∑
m,i

µmiξmi

Differentiating w.r.t. β and equating to zero:

β =
1

2λ
(ŴT Ŵ)−1(

∑
m,i

αmiymiŴT xmi)
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Distributed Applications Weighted Parameter Averaging

Dual Weighted Parameter Averaging

Similarly, differentiating w.r.t. ξmi and equating to zero:

0 ≤ αmi ≤
1

ML

Substituting β in L:

min
α
L(α) =

∑
m,i

αmi −
1

4λ

∑
m,i

∑
m′,j

αmiαm′ jymiym′ j (xT
miŴ(ŴT Ŵ)−1ŴT xm′ j )

subject to: 0 ≤ αmi ≤
1

ML
∀i ∈ 1, · · · ,L,m ∈ 1, · · · ,M

SVM with xmi projected using symmetric projection
H = Ŵ(ŴT Ŵ)−1ŴT .
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Distributed Applications Weighted Parameter Averaging

Distributed Weighted Parameter Averaging

Distributed version of primal weighted parameter averaging:

min
γm,β

1
ML

M∑
m=1

L∑
l=1

loss(Ŵγm; xml , yml) + r(β)

s.t. γm − β = 0, m = 1, · · · ,M,

r(β) = λ‖Ŵβ‖2, γm weights for mth computer, β consensus
weight.
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Distributed Applications Weighted Parameter Averaging

Distributed Weighted Parameter Averaging

Distributed algorithm using ADMM:

γk+1
m := argmin

γ
(loss(Aiγ) + (ρ/2)‖γ − βk + uk

m‖22)

βk+1 := argmin
β

(r(β) + (Mρ/2)‖β − γk+1 − uk‖22)

uk+1
m = uk

m + γk+1
m − βk+1.

um are the scaled Lagrange multipliers, γ = 1
M
∑M

m=1 γm and
u = 1

M
∑M

m=1 um.
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Distributed Applications Results - Weighted PA
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Distributed Applications Results - Weighted PA

Toy Dataset - PA and WPA

PA (left) and WPA (right) with varying number of partitions - Toy
dataset.
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Distributed Applications Results - Weighted PA

Toy Dataset - PA and WPA

Accuracy of PA and WPA with varying number of partitions - Toy
dataset.
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Distributed Applications Results - Weighted PA

Toy Dataset - PA and WPA

Bias (E [‖w −w∗‖]) of PA, WPA and DSVM with varying number of
partitions - Toy dataset.

Sample size Mean bias(PA) Mean bias(DWPA) Mean bias(DSVM)
3000 0.868332 0.260716 0.307931
6000 0.807217 0.063649 0.168727
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Distributed Applications Results - Weighted PA

Real World Datasets

Epsilon (2000 features, 6000 datapoints) test set accuracy with varying
number of partitions.
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Distributed Applications Results - Weighted PA

Real World Datasets

Gisette (5000 features, 6000 datapoints) test set accuracy with varying
number of partitions.
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Distributed Applications Results - Weighted PA

Real World Datasets

Real-sim (20000 features, 3000 datapoints) test set accuracy with
varying number of partitions.
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Distributed Applications Results - Weighted PA

Real World Datasets

Convergence of test accuracy with iterations (200 partitions).
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Distributed Applications Results - Weighted PA

Real World Datasets

Convergence of primal residual with iterations (200 partitions).
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Distributed Applications Results - Weighted PA

Fully distributed SVM

SVM optimization problem:

min
w ,b,ξ

1
2
‖w‖2 + C

J∑
j=1

nj∑
n=1

ξjn

s.t.: yjn(w txjn + b) ≥ 1− ξjn, ∀j ∈ J,n = 1, . . . ,Nj

ξjn ≥ 0, ∀j ∈ J,n = 1, . . . ,Nj

Node j has a copy of wj ,bj . Distributed formulation:

min
{wj ,bj ,ξjn}

1
2

J∑
j=1

‖wj‖2 + JC
J∑

j=1

nj∑
n=1

ξjn

s.t.: yjn(w t
j xjn + b) ≥ 1− ξjn, ∀j ∈ J,n = 1, . . . ,Nj

ξjn ≥ 0, ∀j ∈ J,n = 1, . . . ,Nj

wj = wi , ∀j , i ∈ Bj
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Distributed Applications Fully Distributed SVM

Outline

1 ADMM
Precusors
Derivations and Observations
Convergence

2 Distributed Applications
Distributed Consensus
Distributed loss minimization
Weighted Parameter Averaging
Results - Weighted PA
Fully Distributed SVM

Sourangshu Bhattacharya (IITKGP) ADMM 55 / 59



Distributed Applications Fully Distributed SVM

Fully distributed SVM

Using vj = [wT
j bj ]

T , Xj = [[xj1, . . . , xjNj ]
T 1j ] and

Yj = diag([yj1, . . . , yjNj ]):

min
{vj ,ξjn,ωji}

1
2

J∑
j=1

r(vj) + JC
J∑

j=1

nj∑
n=1

ξjn

s.t.: YjXjvj ≥ 1− ξ̄j , ∀j ∈ J
ξ̄j ≥ 0, ∀j ∈ J
vj = ωji , vi = ωji , ∀j , i ∈ Bj

Surrogate augmented Lagrangian:

L({vj}, {ξ̄j}, {ωji}, {αijk}) =
1
2

J∑
j=1

r(vj) + JC
J∑

j=1

nj∑
n=1

ξjn

+
J∑

j=1

∑
i∈Bj

(αT
ij1(vj − ωji) + αT

ij2(vi − ωji))

+ η
∑
i∈Bj

(‖vj − ωji‖2 + ‖vi − ωji‖2)
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Fully distributed SVM

ADMM based algorithm:

{v t+1
j , ξt+1

jn } = argmin{vj ,ξ̄j}∈WL({vj}, {ξ̄j}, {ωt
ji}, {α

t
ijk})

{ωt+1
ji } = argminωji

L({vj}t+1, {ξ̄t+1
j }, {ωji}, {αt

ijk})

αt+1
ji1 = αt

ji1 + η(v t+1
j − ωt+1

ji )

αt+1
ji2 = αt

ji2 + η(ωt+1
ji − v t+1

i )
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Conclusions

Good approximation to training SVM and other classifiers on Big
data platforms is an open problem - tradeoff between computation
and quality.
Training SVM in a projected space can lead to efficient and
accurate algorithms and bounds on stability w.r.t. generalization
error.
Future directions - applicability to:

Kernels methods.
Other supervised learning algorithms.
Unsupervised learning ??
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Thank you !

Questions ?
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