CS60021: Scalable Data Mining

Large Scale Machine Learning

THEORETICAL GUARRANTEES

Convergence Rate and Assumptions

A sequence {x*} is said to converge at the rate y*, if:

[— x| <Al - x| (= 1k - xT < yRx" - %),

Assumption (L/c)

The objective function F : R* — R is
> c-strongly convex (= unique minimizer) and

> L-smooth (i.e., VF' is Lipschitz continuous with constant L).

Gradient Descent Convergence

_5 F(wg)

F(wg) + VF(we) T (w — wp) + L Lllw — w13

F(wy) + VF(w) T (w — wg) + 2ellw — wy I3

(Choosing a = 1/L to minimize upper bound yields\ /
(F(wr41) — Fx) < (F(wg) — Fy) — 52 [IVF(wy)l|3
while lower bound yields
5IVF(wi)|13 > c(F(wg) — Fy),
which together imply that

g4
oy

(F(wk41) — Fx) < (1 — £)(F(wg) — Fx).

A 4

L-smooth Objective function
[IVE(w) — VE(W)|| < L|lw — w||

Proof of inequality:

F(w) = F(w) + /O oF(w +;§w —) g

= F(w) + /O VE(@ + t(w —)T (w — w) dt
= F(w) + VF(0)T (w — w) + /O [VF(w+ t(w — w)) — VF(@)]" (w —) dt

< F(@) + VF(0)" (w — @) + /O Lljt(w — w)|2]|w — w]|2 dt,

C-strong convexity

F(w) = F(wy) + VF(w)T(w — wy) + ‘

2||W_Wk||2

Minimizing the RHS w.r.t. w:

~

W =w, — %VF(WR)

Lower bound on RHS: F(wy) — 2—1C ||VF(Wk)||2

Putting back in the first equation:
2
c(Fw) = Fw)) < 1/2 |IVF(w)l|

Convergence Rate and Computational Complexity

Overall Complexity (€) = Convergence Rate™ () * Complexity of each iteration

Strongly Convex + Smooth Convex + Smooth
Convergence Rate Complexity of = Overall Complexity Convergence = Complexity of v Overall Complexity

each iteration Rate each iteration

O o) 0 ofenfl) o) o)

56D 1 o) d 1 0od d
R AR IR

SGD Analysis

THEOREM 14.8 Let B,p > 0. Let f be a convez function and let w* € argming o p f(W).

Assume that SGD 1s run for T iterations with n = ?2 . Assume also that for
I AT

all t, ||vy|| < p with probability 1. Then,

< Bp
E - —_,
f(w)] ﬁ
Therefore, for any € > 0, to achieve E[f(W)] —) < e, it suffices to run the
SGD algorithm for a number of iterations that satzsﬁes
2 2
T>— 2.

€2

SGD Analysis

LEMMA 14.1 Letvy,...,vy be an arbitrary sequence of vectors. Any algorithm
with an initialization wV) = 0 and an update rule of the form

wit) = wlt) — py, (14.4)

satisfies

| N |3

—W Vt

M’%

Z vell*. (14.5)

In particular, for every B,p > 0, if for all t we have that ||v¢|| < p and if we set

n= ;g_?r, then for every w* with ||w*|| < B we have

t=1

1 Wv<ﬂ

M'ﬂ

t

SGD Analysis

Proof Using algebraic manipulations (completing the square), we obtain:

1
<W(t) o W*,Vt> — 7—7<W(t) _ w*,'rlvt>
1 N *
= 5 (W =W —vil|? 4wl — w2 + 02|)
1

e (D) ox)2 (£) o*[|2 n 2
277([w W+ 1w = W) + S llvell,

SGD Analysis

where the last equality follows from the definition of the update rule. Summing
the equality over £, we have

T T
* x * n

(W mwhvi) = oo 37 (SIw D = w P WO = wH?) 45 5 vl

t=1 t=1 t=1

1 T

The first sum on the right-hand side is a telescopic sum that collapses to

lw® — w2 — Wl — w2,

SGD Analysis

Plugging this in Equation (14.6), we have

T T
R 1 ; . U
D (W —wve) = o (Iw = w P = w T —w) 4 53 vl

t=1 t=1

1 *
< g lw® — w4 3 Z v

T
1 * 112 n 2
= 5w 1P+ 5 3 Ivel®
t=1
where the last equality is due to the definition w(!) = 0. This proves the first

part of the lemma (Equation (14.5)). The second part follows by upper bounding
|lw*|| by B, ||v¢| by p, dividing by T, and plugging in the value of 7. O

SGD Analysis

Proof of theorem:

T
E [f(w)— f(w")] < E [%Z w®) *))].

vVi:.T V1.7 t—1

Since Lemma 14.1 holds for any sequence vy, vo, ...vp, it applies to SGD as well.
By taking expectation of the bound in the lemma we have

1 d
72w —wvi)

< (14.9)

NI

It is left to show that

. [%Z wt) w”] [) —w* v,)], (14.10)
127 t—1 1:T t:]

-
M 5

SGD Analysis

Using the linearity of the expectation we have
1 T
t *
=7 E E [(w() —w , Vi)

vi:T
t=1

i
1
- (£) _ ws*
E T ;zl(w W™, Vi)

vi:T

Next, we recall the law of total expectation: For every two random variables «, /3,
and a function g, E,[g(a)] = Ez E,[g(a)|3]. Setting @ = vy.; and B = vy, we
get that

E (W —w*, v;)] = E [(wl!) —w*, v;)]

vi:T Vi:t

= E E [(w(t) — W, ve) | viie—1] -
Vi:it—1 Vi:t

Once we know v;.,_1, the value of w'¥) is not random any more and therefore

E E [(w(t) — W v¢)|vie—1]= E (w(t) —w*, E[v | vie-1]) -
Vi:it—1 Vit Vit—1 Vi

SGD Analysis

Since w'?) only depends on vy.;_; and SGD requires that E,, [v; | w®] € 9 f(w?))
we obtain that Ey, [v;|vyi4_1] € f(w®). Thus,
E (w®)— w*,@[vt |Viie—1]) 2 . E [f(w®)— f(w")].

Vi:t—1 1: t—1

Overall, we have shown that

E [(w" —w"v)]> E [f(w")— f(w")]

Vi.p Viit—1

= E [f(w) - f(w")].

vi:T

Summing over t, dividing by 7', and using the linearity of expectation, we get
that Equation (14.10) holds, which concludes our proof. O

LINEAR RATE METHODS

Improving SGD

stochastic batch
gradient gradient
- === > />
noise reduction)/
stochastic batch
Newton Newton

Slides taken from Jorge Nocedal

Stochastic Averaged Gradient

e Can we have a rate of O(p’) with only 1 gradient evaluation per iteration?
e YES! The stochastic average gradient (SAG) algorithm:

e Randomly select i; from {1,2,..., N} and compute f;, (z").
ot &
t+1 _ t O t
& s = N E_l Y;

e Memory: y! = Vfi(z') from the last # where i was selected.
[Le Roux et al., 2012]
e Stochastic variant of increment average gradient (IAG).

[Blatt et al., 2007]
e Assumes gradients of non-selected examples don’'t change.

o Assumption becomes accurate as ||z!*t! — zt|| — 0.

Slides taken from Mark Schmidt

SAG Convergence Rate

If each f! is L—continuous and f is strongly-convex,
with oy = 1/16L SAG has

E[f () — f(z")] < (1 - {mLL SLN}) ,

where
41, o2

C =[fa") = f@)]+ 2" = 2"I° + 17

Linear convergence rate but only 1 gradient per iteration.
e For well-conditioned problems, constant reduction per pass:

1\V 1
1] — — < ——= 1 = 0.8825.
(8N> —exp(8)

o For ill-conditioned problems, almost same as deterministic method (but N times
faster).

SAG Convergence Rate

@ Assume that N = 700000, L = 0.25, u = 1/N:

2
e Gradient method has rate <§—;5) = (0.99998.

o Accelerated gradient method has rate (1 — f) = 0.99761.
e SAG (N iterations) has rate (1 — min { &7, 5 sy })Z = 0.88250

o fastest possible first-order method: (%) = 0.99048.

@ SAG beats two lower bounds:
e Stochastic gradient bound (of O(1/t)).
e Deterministic gradient bound (for typical L, p, and N).

e Number of f/ evalliations to reach e:
e Stochastic: O((1/€)).
° Zradi::t: O(O]\(f%(lo/g()l)/e))
o Accelerated: O(N\/%log(l/e)).
o SAG: O(max{N, /%}log(l/e)).

SAG Implementation

@ Basic SAG algorithm:
o while(1)
e Sample i from {1,2,...,N}.
o Compute f/(z).
o d=d—y;+ fi(x).
° y; = fi(x).
* r=zx— &d.
@ Practical variants of the basic algorithm allow:
e Regularization.

e Sparse gradients.
o Automatic step-size selection.

@ Common to use adaptive step-size procedure to estimate L.
e T[ermination criterion.
o Can use |[z'"!" — 2'||/a = Ld = ||V f(z")| to decide when to stop.

Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].

SAG Implementation

@ Does re-shuffling and doing full passes work better?
e For classic SG: Maybe?

@ Noncommutative arithmetic-geometric mean inequality conjecture.
[Recht & Ré, 2012]

e For SAG: NO.
e Performance is intermediate between |AG and SAG.

@ Can non-uniform sampling help?

e For classic SG methods, can only improve constants.
e For SAG, bias sampling towards Lipschitz constants L;,

IVfi(z) = Vi)l < Lillz —yll.

improves rate to depend on Lean instead of Lax.
(with bigger step size)
o Adaptively estimate L; as you go. (see paper/code).
e Slowly learns to ignore well-classified examples.

SAG with Non-Uniform Sampling

@ protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)

Objective minus Optimum

1 1]0— T 1 T
0 10 20 30 40 50 0 10 20 30 40 50
Effective Passes Effective Passes

@ Adaptive non-uniform sampling helps a lot.

Stochastic Variance Reduced GD

SVRG algorithm:
@ Start with xg

@ fors=0,1,2...
& = % Z,\:l fi(zs)
o 20 =,

& Tort= 1,2 oot
e Randomly pick i; € {1,2,..., N}
o r!=g"1— a:(fi, (zf) - fi, (zs) + ds).

® £, =z’ forrandom t € {1,2,...,m}.

Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and z;.

Practical issues similar to SAG (acceleration versions, automatic step-size/termination,
handles sparsity/regularization, non-uniform sampling, mini-batches).

BATCH NORMALIZATION

Slides taken from Jude Shavlik: http://pages.cs.wisc.edu/~shavlik/cs638 cs838.html

http://pages.cs.wisc.edu/~shavlik/cs638_cs838.html

Batch normalization:
Other benefits in practice

BN reduces training times. (Because of less Covariate Shift, less
exploding/vanishing gradients.)

BN reduces demand for regularization, e.g. dropout or L2 norm.

— Because the means and variances are calculated over batches and therefore
every normalized value depends on the current batch. l.e. the network can no
longer just memorize values and their correct answers.)

BN allows higher learning rates. (Because of less danger of
exploding/vanishing gradients.)

BN enables training with saturating nonlinearities in deep networks, e.g.
sigmoid. (Because the normalization prevents them from getting stuck in
saturating ranges, e.g. very high/low values for sigmoid.)

Training Accuracy (%)

100

Internal Covariate Shift

Standard
100

= Standard, LR=0.1
===: Standard + BatchNorm, LR=0.1
=== Standard, LR=0.5

===: Standard + BatchNorm, LR=0.5

Standard, LR=0.1
===: Standard + BatchNorm, LR=0.1
=== Standard, LR=0.5

===: Standard + BatchNorm, LR=0.5

Layer #3
PR

Test Accuracy (%)

Layer #11

5k 10k 15k 0 5k 10k 15k : -
Steps Steps e o

Standard + BatchNorm

¥ 2 2R

Why the naive approach Does not
work?

 Normalizes layer inputs to zero mean and unit variance. whitening.

* Naive method: Train on a batch. Update model parameters. Then
normalize. Doesn't work: Leads to exploding biases while distribution
parameters (mean, variance) don't change.

— If we do it this way gradient always ignores the effect that the
normalization for the next batch would have

— i.e.: “The issue with the above approach is that the gradient descent
optimization does not take into account the fact that the
normalization takes place”

The proposed
solution:

To add an extra
regularization
layer

we introduce, for each activation x'*!, a pair of parameters
~%1 3] which scale and shift the normalized value:

ylk) = (RIzk) 4 glk),

NN without BN NN without BN
Output Output
W2 FE—_—————
I Hidden
Hidden : Layer
Layer I
1 BN Layer
W]_ b i e e
Input Input

A new layer is added so the gradient can “see”
the normalization and make adjustments if
needed.

Algorithm Summary:
Normalization via Mini-Batch Statistics

Each feature (component) is normalized individually
Normalization according to:

— componentNormalizedValue = (componentOldValue -
E[component]) / sqrt(Var(component))

A new layer is added so the gradient can “see” the
normalization and made adjustments if needed.

— The new layer has the power to learn the identity function to de-
normalize the features if necessary!

— Full formula: newValue = gamma * componentNormalizedValue + beta
(gamma and beta learned per component)

E and Var are estimated for each mini batch.
BN is fully differentiable.

The Batch Transformation: formally from the paper.

Input: Values of x over a mini-batch: B = {x1.. . };
Parameters to be learned: v,
Output: {y; = BN, s(z:)}

1 <& L
B — — Z Xi // mini-batch mean
ma=
1 ™m
O - Z(% — 1B)* // mini-batch variance
i=1
—~ Ty — .
L // normalize

yi < vx; + B = BN, g(z;) // scale and shift

The full algorithm as proposed in the paper

Input: Network N with trainable parameters ©;
subset of activations {z*' } K
Output: Batch-normalized network for inference, Nivi

gy = N // Training BN network
2:fork=1...Kdo

e
..

3: Add transformation y(M
Nix (Alg. 1)

4: Modify cach layer in Ny with input z*) to take
y'*) instead
5: end for

ou {’Y“"sg“‘"}f:l

7: Nl « Ngy // Inference BN network with frozen

/[parameters
8 fork=1... K do

9: /f For clarity, r = z'%), v = 4% up = pg::', ele.

10: Process multiple training mini-batches B, each of
size m, and average over them: /

E[z] « Eg|us|
Var[z] « —B=Eglod]

11: In N, replace the transform y = BN, sz(z) with

. ~ X _ ~Elx
¥y= ;;Var[z']—-e z+ (‘B ;;Var[.r]+e.)

12: end for

\

6: Train Ny, to optimize the parameters

Algorithm 2: Training a Batch-Normalized Network

Alg 1 (previous slide)

Note that BN(x) is different
during test...

1
O EZ{"T" — ug)’

i=1

Vs.

Var[z] + m—TrEH[JE,—]

Batch normalization:
Other benefits in practice

BN reduces training times. (Because of less Covariate Shift, less
exploding/vanishing gradients.)

BN reduces demand for regularization, e.g. dropout or L2 norm.

— Because the means and variances are calculated over batches and therefore
every normalized value depends on the current batch. l.e. the network can no
longer just memorize values and their correct answers.)

BN allows higher learning rates. (Because of less danger of
exploding/vanishing gradients.)

BN enables training with saturating nonlinearities in deep networks, e.g.
sigmoid. (Because the normalization prevents them from getting stuck in
saturating ranges, e.g. very high/low values for sigmoid.)

Batch normalization:

Better accuracy , faster.

0.9

0.8

/_/,’ —————— 2 2 W
7/
1
] 0 O
,' — — = Without BN
0.7 i
10K 20K 30K 40K 50K ~2 2

(a) (b) Without BN (c) With BN

BN applied to MNIST (a), and activations of a
randomly selected neuron over time (b, c),
where the middle line is the median activation,
the top line is the 15th percentile and the
bottom line is the 85th percentile.

References:

« SGD convergence rate:
Shalev-Shwartz, S. and Ben-David, S., 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

* Stochastic Averaged Gradient:
https://svan2016.sciencesconf.org/resource/page/id/6.html

* First SGD in ML paper:
« Léon Bottou and Olivier Bousquet: The Tradeoffs of Large Scale

Learning, Advances in Neural Information Processing Systems, 20, MIT Press,
Cambridge, MA, 2008.

39

https://svan2016.sciencesconf.org/resource/page/id/6.html

