CS60021: Scalable Data Mining

Large Scale Machine Learning

Sourangshu Bhattacharya

Much of ML is optimization

Linear Classification

$$\arg\min_{w} \sum_{i=1}^{n} ||w||^{2} + C \sum_{i=1}^{n} \xi_{i}$$

s.t. $1 - y_{i} x_{i}^{T} w \leq \xi_{i}$
 $\xi_{i} \geq 0$

Maximum Likelihood

$$\arg\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i)$$

K-Means

$$\arg\min_{\mu_1,\mu_2,\ldots,\mu_k} J(\mu) = \sum_{j=1}^k \sum_{i \in C_j} ||x_i - \mu_j||^2$$

Stochastic optimization

- Goal of machine learning :
 - Minimize expected loss

$$\min_{h} L(h) = \mathbf{E} \left[\operatorname{loss}(h(x), y) \right]$$

given samples $(x_i, y_i) \ i = 1, 2...m$

- This is Stochastic Optimization
 - Assume loss function is convex

Batch (sub)gradient descent for ML

• Process all examples together in each step

$$w^{(k+1)} \leftarrow w^{(k)} - \eta_t \left(\frac{1}{n} \sum_{i=1}^n \frac{\partial L(w, x_i, y_i)}{\partial w}\right)$$

where L is the regularized loss function

- Entire training set examined at each step
- Very slow when *n* is very large

Stochastic (sub)gradient descent

- "Optimize" one example at a time
- Choose examples randomly (or reorder and choose in order)
 - Learning representative of example distribution

for
$$i = 1$$
 to n :
 $w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$

where L is the regularized loss function

Stochastic (sub)gradient descent

for
$$i = 1$$
 to n :
 $w^{(k+1)} \leftarrow w^{(k)} - \eta_t \frac{\partial L(w, x_i, y_i)}{\partial w}$

where L is the regularized loss function

- Equivalent to online learning (the weight vector *w* changes with every example)
- Convergence guaranteed for convex functions (to local minimum)

SGD convergence

Objective function value

Stochastic gradient descent

- Given dataset $D = \{(x_1, y_1), ..., (x_m, y_m)\}$
- Loss function: $L(\theta, D) = \frac{1}{N} \sum_{i=1}^{N} l(\theta; x_i, y_i)$
- For linear models: $l(\theta; x_i, y_i) = l(y_i, \theta^T \phi(x_i))$
- Assumption D is drawn IID from some distribution \mathcal{P} .
- Problem:

$$\min_{\theta} L(\theta, D)$$

Stochastic gradient descent

- Input: *D*
- Output: $\bar{\theta}$

Algorithm:

• Initialize θ^0

• For
$$t = 1, ..., T$$

 $\theta^{t+1} = \theta^t - \eta_t \nabla_{\theta} l(y_t, \theta^T \phi(x_t))$
• $\bar{\theta} = \frac{\sum_{t=1}^T \eta_t \theta^t}{\sum_{t=1}^T \eta_t}.$

SGD convergence

- Expected loss: $s(\theta) = E_{\mathcal{P}}[l(y, \theta^T \phi(x))]$
- Optimal Expected loss: $s^* = s(\theta^*) = \min_{\theta} s(\theta)$
- Convergence:

$$E_{\overline{\theta}}[s(\overline{\theta})] - s^* \leq \frac{R^2 + L^2 \sum_{t=1}^T \eta_t^2}{2 \sum_{t=1}^T \eta_t}$$

- Where: $R = \|\theta^0 \theta^*\|$
- $L = \max \nabla l(y, \theta^T \phi(x))$

SGD convergence proof

- Define $r_t = \|\theta^t \theta^*\|$ and $g_t = \nabla_{\theta} l(y_t, \theta^T \phi(x_t))$
- $r_{t+1}^2 = r_t^2 + \eta_t^2 ||g_t||^2 2\eta_t (\theta^t \theta^*)^T g_t$
- Taking expectation w.r.t $\mathcal{P}, \overline{\theta}$ and using $s^* s(\theta^t) \ge g_t^T(\theta^* \theta^t)$, we get: $E_{\overline{\theta}}[r_{t+1}^2 - r_t^2] \le \eta_t^2 L^2 + 2\eta_t (s^* - E_{\overline{\theta}}[s(\theta^t)])$
- Taking sum over t = 1, ..., T and using $E_{\overline{\theta}}[r_{t+1}^2 - r_0^2] \le L^2 \sum_{t=0}^{T-1} \eta_t^2 + 2 \sum_{t=0}^{T-1} \eta_t (s^* - E_{\overline{\theta}}[s(\theta^t)])$

SGD convergence proof

- Using convexity of *s*: $\left(\sum_{t=0}^{T-1} \eta_t\right) E_{\overline{\theta}} \left[s(\overline{\theta})\right] \le E_{\overline{\theta}} \left[\sum_{t=0}^{T-1} \eta_t s(\theta^t)\right]$
- Substituting in the expression from previous slide: $E_{\overline{\theta}}[r_{t+1}^2 - r_0^2] \le L^2 \sum_{t=0}^{T-1} \eta_t^2 + 2 \sum_{t=0}^{T-1} \eta_t (s^* - E_{\overline{\theta}}[s(\overline{\theta})])$
- Rearranging the terms proves the result.

SGD - Issues

 Convergence very sensitive to learning rate

 (η_t) (oscillations near solution due to probabilistic nature of sampling)

- Might need to decrease with time to ensure the algorithm converges eventually
- Basically SGD good for machine learning with large data sets!

Mini-batch SGD

- Stochastic 1 example per iteration
- Batch All the examples!
- Mini-batch SGD:
 - Sample *m* examples at each step and perform SGD on them
- Allows for parallelization, but choice of m based on heuristics

Example: Text categorization

• Example by Leon Bottou:

- Reuters RCV1 document corpus
 - Predict a category of a document
 - One vs. the rest classification
- n = 781,000 training examples (documents)
- 23,000 test examples
- *d* = 50,000 features
 - One feature per word
 - Remove stop-words
 - Remove low frequency words

Example: Text categorization

• Questions:

- (1) Is SGD successful at minimizing *f(w,b)*?
- (2) How quickly does SGD find the min of *f(w,b)*?
- (3) What is the error on a test set?

	Training time	Value of f(w,b)	Test error
Standard SVM	23,642 secs	0.2275	6.02%
"Fast SVM"	66 secs	0.2278	6.03%
SGD SVM	1.4 secs	0.2275	6.02%

(1) SGD-SVM is successful at minimizing the value of *f(w,b)*

(2) SGD-SVM is super fast

(3) SGD-SVM test set error is comparable

Optimization "Accuracy"

Optimization quality: $| f(w,b) - f(w^{opt},b^{opt}) |$

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

Learning Rate / Step-size schedule

• Need to choose learning rate η and \textbf{t}_{0}

$$w_{t+1} \leftarrow w_t - \frac{\eta_0}{t+t_0} \left(\frac{\partial L(x_i, y_i)}{\partial w} \right); \quad \eta = \frac{\eta_0}{t+t_0}$$

- Leon suggests:
 - Choose t_o so that the expected initial updates are comparable with the expected size of the weights
 - Choose η_0 :
 - Select a small subsample
 - Try various rates η_0 (e.g., 10, 1, 0.1, 0.01, ...)
 - Pick the one that most reduces the cost
 - Use η for next 100k iterations on the full dataset
 - Alternative form:

$$\eta = \frac{\eta_0}{1 + (decay * t)}$$

- Step decay schedule:
 - Drop the learning rate by half every 10 epochs.

•
$$\eta = \eta_0 * (drop)^{floor(\frac{t}{t_{drop}})}$$

Learning rate comparison

ACCELERATED GRADIENT DESCENT

Stochastic gradient descent

Idea: Perform a parameter update for each training example x(i) and label y(i)

Update: $\theta = \theta - \eta \cdot \nabla_{\theta} J(\theta; x(i), y(i))$

Performs redundant computations for large datasets

Momentum gradient descent

Idea: Overcome ravine oscillations by momentum

Update:

- $V_t = \gamma V_{t-1} + \eta \cdot \nabla_{\theta} J(\theta)$
- $\theta = \theta v_t$

SGD with momentum

Why Momentum Really Works

The momentum term **reduces updates for dimensions whose gradients change directions**.

The momentum term **increases for dimensions whose** gradients point in the same directions.

Demo : <u>http://distill.pub/2017/momentum/</u>

- However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory.
- We would like to have a smarter ball that has a notion of where it is going so that it knows to slow down before the hill slopes up again.
- Nesterov accelerated gradient gives us a way of it.

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$

$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

Approximation of the next position of the parameters' gradient(correction)

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

Blue line : predict

Approximation of the next position of the parameters' gradient(correction)

Red line : correction

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

Blue line : predict

Approximation of the next position of the parameters' gradient(correction)

Red line : correction

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

Blue line : predict

Approximation of the next position of the parameters' gradient(correction)

Red line : correction

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Green line :accumulated gradient

Approximation of the next position of the parameters(predict)

Blue line : predict

Approximation of the next position of the parameters' gradient(correction)

Red line : correction

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

Blue line : predict

Approximation of the next position of the parameters' gradient(correction)

Red line : correction

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

Blue line : predict

Approximation of the next position of the parameters' gradient(correction)

Red line : correction

$$v_{t} = \gamma v_{t-1} + \eta \nabla_{\theta} J(\theta - \gamma v_{t-1})$$
$$\theta = \theta - v_{t}$$

Approximation of the next position of the parameters(predict)

- This anticipatory update prevents us from going too fast and results in increased responsiveness.
- Now , we can adapt our updates to the slope of our error function and **speed up SGD** in turn.

What's next...?

- We also want to adapt our updates to each individual parameter to perform larger or smaller updates **depending on their importance**.
 - Adagrad
 - Adadelta
 - RMSprop
 - Adam

Adagrad

- Adagrad adapts the learning rate to the parameters
 - Performing larger updates for infrequent
 - Performing smaller updates for frequent parameters.
- Ex.
 - Training large-scale neural nets at Google that learned to recognize cats in Youtube videos.

Different learning rate for every parameter

- Previous methods :
 - we used the same learning rate η for all parameters heta
- Adagrad :
 - It uses a different learning rate for every parameter θ_i at every time step t
Adagrad

$$\begin{array}{c} \mathsf{SGD} \\ \theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i} \end{array} \qquad \begin{array}{c} \mathbb{R}^{d \times} \\ d \end{array} \qquad \begin{array}{c} \mathbb{R}^{d \times} \\ \mathbb{R}^{d \times} \\$$

Adagrad modifies the general learning rate η based on the past gradients that have been computed for θ_i

Adagrad
$$heta_{t+1,i} = heta_{t,i} - rac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$

$$g_{t,i} =
abla_{ heta} J(heta_i)$$

Vectorize

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t.$$

Adagrad

SGD
$$heta_{t+1,i} = heta_{t,i} - \eta \cdot g_{t,i}$$

 $\begin{array}{c} \textbf{G}_{t} \text{ is a diagonal matrix where each diagonal} \\ \text{element } (i,i) \text{ is the sum of the squares of the} \\ \text{gradients } \theta_{i} \text{ up to time step } t. \end{array}$ $\begin{array}{c} \textbf{Adagrad} \\ \theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i} \\ \sqrt{G_{t,ii} + \epsilon} \cdot g_{t,i} \end{array}$ $\begin{array}{c} \textbf{Vectorize} \\ \theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{G_{t} + \epsilon}} \odot g_{t}. \end{array}$

Adagrad

SGD

$$\theta_{t+1,i} = \theta_{t,i} - \eta \cdot g_{t,i}$$

$$G_t = \begin{bmatrix} \mathbb{R}^{d \times} & \mathbb{R}^{d \times} \\ \mathbb{R}^{d \times} & \mathbb{R}$$

 ε is a smoothing term that avoids division by zero (usually on the order of 1e - 8).

Adagrad
$$\theta_{t+1,i} = \theta_{t,i} - \frac{\eta}{\sqrt{G_{t,ii} + \epsilon}} \cdot g_{t,i}$$

$$g_{t,i} =
abla_{ heta} J(heta_i)$$

Vectorize

$$heta_{t+1} = heta_t - rac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t.$$

Adagrad's advantages

- Advantages :
 - It is well-suited for dealing with sparse data.
 - It greatly improved the robustness of SGD.
 - It eliminates the need to manually tune the learning rate.

Adagrad's disadvantage

- Disadvantage :
 - Main weakness is its accumulation of the squared gradients in the denominator.

Adagrad's disadvantage

- The disadvantage causes the learning rate to shrink and become infinitesimally small. The algorithm can no longer acquire additional knowledge.
- The following algorithms aim to resolve this flaw.
 - Adadelta
 - RMSprop
 - Adam

• The expected square sum of gradients is recursively defined as a decaying average of all past squared gradients.

$$E[g^2]_t = \gamma E[g^2]_{t-1} + (1-\gamma)g_t^2$$

- $E[g^2]_t$: The running average at time step t.
- γ : A fraction similarly to the Momentum term, around 0.9

Adagrad
$$\Delta heta_t = -rac{\eta}{\sqrt{G_t + \epsilon}} \odot g_t$$

SGD
$$\Delta heta_t = -\eta \cdot g_{t,i}$$
 $heta_{t+1} = heta_t + \Delta heta_t$

Replace the diagonal matrix G_t with the decaying average over past squared gradients $E[g^2]_t$

Adadelta
$$\Delta heta_t = -rac{\eta}{\sqrt{E[g^2]_t + \epsilon}}g_t$$

SGD

$$\Delta heta_t = -\eta \cdot g_{t,i} \ heta_{t+1} = heta_t + \Delta heta_t$$

Replace the diagonal matrix G_t with the decaying average over past squared gradients $E[g^2]_t$

Update units should have the same hypothetical units

- The units in this update do not match and the update should have the same hypothetical units as the parameter.
 - As well as in SGD, Momentum, or Adagrad
- To realize this, first defining another exponentially decaying average

$$E[\Delta \theta^2]_t = \gamma E[\Delta \theta^2]_{t-1} + (1-\gamma)\Delta \theta_t^2$$

Adadelta update rule

• Replacing the learning rate η in the previous update rule with $RMS[\Delta\theta]_{t-1}$ finally yields the Adadelta update rule:

$$\begin{split} \Delta \theta_t &= -\frac{RMS[\Delta \theta]_{t-1}}{RMS[g]_t}g_t \\ \theta_{t+1} &= \theta_t + \Delta \theta_t \end{split}$$

• Note : we do not even need to set a default learning rate

RMSprop

RMSprop and Adadelta have both been developed independently around the same time to resolve Adagrad's radically diminishing learning rates.

RMSprop
$$E[g^2]_t = 0.9E[g^2]_{t-1} + 0.1g_t^2$$

 $heta_{t+1} = heta_t - rac{\eta}{\sqrt{E[g^2]_t + \epsilon}}g_t$

RMSprop

RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients.

RMSprop
$$E[g^2]_t = 0.9E[g^2]_{t-1} + 0.1g_t^2$$
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{E[g^2]_t + \epsilon}}g_t$$

Hinton suggests γ to be set to 0.9, while a good default value for the learning rate η is 0.001.

Adam

- Adam's feature :
 - Storing an exponentially decaying average of past squared gradients v_t like Adadelta and RMSprop
 - Keeping an exponentially decaying average of past gradients m_t , similar to momentum.

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t \longrightarrow$ The first moment (the mean)

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

The second moment (the uncentered variance)

Adam

1

- As m_t and v_t are initialized as vectors of 0's, they are biased towards zero.
 - Especially during the initial time steps
 - Especially when the decay rates are small
 - (i.e. $\beta 1$ and $\beta 2$ are close to 1).
- Counteracting these biases in Adam

$$\hat{n}_{t} = \frac{m_{t}}{1 - \beta_{1}^{t}}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$

$$\hat{v}_{t} = \frac{v_{t}}{1 - \beta_{2}^{t}}$$
Adam
$$\theta_{t+1} = \theta_{t} - \frac{\eta}{\sqrt{\hat{v}_{t}} + \epsilon} \hat{m}_{t}$$
Note : default values of 0.9 for β_{1} , 0.999 for β_{2} , and 10⁻⁸ for ϵ

Visualization

Visualization

Enhancements comparison

Summary

• There are two main ideas at play:

 Momentum : Provide consistency in update directions by incorporating past update directions.

- Adaptive gradient : Scale the scale updates to individual variables using the second moment in that direction.
- This also relates to adaptively altering step length for each direction.

References:

- SGD convergence proof by Yuri Nesterov.
- Accelerated SGD: Ruder, Sebastian. "An overview of gradient descent optimization algorithms." *arXiv preprint arXiv:1609.04747* (2016).
- First SGD in ML paper:

Léon Bottou and Olivier Bousquet: **The Tradeoffs of Large Scale Learning**, *Advances in Neural Information Processing Systems*, 20, MIT Press, Cambridge, MA, 2008.