CS60021: Scalable Data Mining

Large Scale Machine Learning

Much of ML is optimization

Linear Classification Maximum Likelihood
mn mn
argminz ||w]|? + C’Zé};
w
i=1 i=1 arg max Z log pg(x;)
s.t. 1 —yix] w < & =1

& >0

K-Means

H1,12,. -

k
arg min Z Z ||2s — /ij’|2
j=1lieC}

Stochastic optimization

* Goal of machine learning :
— Minimize expected loss

mhin L(h) = E [loss(h(zx),y)]

given samples (z;,y;) i =1,2...m

* This is Stochastic Optimization

— Assume loss function is convex

Batch (sub)gradient descent for ML

* Process all examples together in each step

n

wk D (k) - (l Z 8L(w,$i7yi)>

n 4 ow
=1

where L is the regularized loss function

* Entire training set examined at each step

* Very slow when nis very large

Stochastic (sub)gradient descent

 “Optimize” one example at a time

* Choose examples randomly (or reorder and
choose in order)
— Learning representative of example distribution

for 2 =1 to n:
8[/(’(1),33@,3/1)

wk D) o ®) ~

where L is the regularized loss function

Stochastic (sub)gradient descent

for 2 =1 to n:
8L<w7x27yz>

ow

where L is the regularized loss function

e Equivalent to online learning (the weight vector w
changes with every example)

* Convergence guaranteed for convex functions (to local
minimum)

SGD convergence

Objective function value

laf

-10

1
500

1 1 1 1
1000 1500 2000 2500

lterations / updates

1
3000

3500

Stochastic gradient descent

Given dataset D = {(x1,¥1), v, (tpp Yim) }
Loss function: L(8,D) = % Il_V:1 L(O; xi, Vi)

For linear models: 1(6; x;, y;) = l(y;, 9T¢(Xi))

Assumption D is drawn IID from some distribution
P.

Problem:
m@in L(6,D)

Stochastic gradient descent

* Input: D)
 Qutput: 0

Algorithm:
e |nitialize Y
. Fort:1,...,T1 .
Ottt = 0t — . Vol(y., 8T P (x,))
~ ZZ:l T}tet
6 = :
Zz:=1 Nt

SGD convergence

Expected loss: s(8) = Eo[l(y, 87 ¢ (x)]
Optimal Expected loss: s* = s(8%) = m@in s(6)

Convergence:

Egls(0)] —s* <

Where: R = ||60° — 6*||
L =maxVI(y, 0T p(x))

SGD convergence proof

Definer; = ||60¢ — 0*|| and g, = Vgl(yt,GTgb(xt))
rée1 =18 +nEllgell® — 20 (6F — 69)7 g,

Taking expectation w.r.t P, 8 and using s* — s(8%) >
gl (6" — 0Y, we get:

Eglrée — ré] S nil? + 21 (s* — Eg[s(6D)])

Taking sumovert =1, ..., T and using

T-1 T-1
FglrZa — 131 <12) n+2) ne(s™ — Egls(0)])
t=0 t=0

SGD convergence proof

Using convexity of s:
& T—1 y T—1

(Z m) Egls(@)] < Egl) nes(89]
t=0

t=0

Substituting in the e>7gpr1ession frqgnin previous slide:

Eglré —16] < L7 Z g + 2 z ne(s™ — Egls(0)])
t=0 t=0

Rearranging the terms proves the result.

SGD - Issues

Convergence very sensitive to
learning rate

("t) (oscillations near solution due to
probabilistic nature of sampling)

— Might need to decrease with time to
ensure the algorithm converges
eventually

Basically — SGD good for machine
learning with large data sets!

Stochastic Gradient

Descent (SGD)!—--"”""

.o

w
Gradient Descent

..
5 gy
-

ll ’,,
‘M

13

Mini-batch SGD

Stochastic — 1 example per iteration
Batch — All the examples!
Mini-batch SGD:

— Sample m examples at each step and perform SGD
on them

Allows for parallelization, but choice of m
based on heuristics

14

Example: Text categorization

Example by Leon Bottou:

— Reuters RCV1 document corpus

* Predict a category of a document
— One vs. the rest classification

— n=781,000 training examples (documents)
— 23,000 test examples
— d =50,000 features

* One feature per word

* Remove stop-words

 Remove low frequency words

Example: Text categorization

Questions:

— (1) Is SGD successful at minimizing f(w,b)?
— (2) How quickly does SGD find the min of f(w,b)?
— (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

16

Optimization “Accuracy”

Training time (secs)
| SGD SVM
100 ¢
' SGD
50 1 - Conventional
. — SVM
‘ /” LibLinear
G

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)
Optimization quality: | f(w,b) — f (wort bort) |

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast

Learning Rate / Step-size schedule

* Need to choose learning rate n and t,
Mo (OL(xi,yi)> Mo

w < W
t+1 t t+t0

)

Tttt e\ ow)’
* Leon suggests:
— Choose t,so that the expected initial updates are comparable with the
expected size of the weights
— Choose ny:
* Select a small subsample
* Tryvarious rates n, (e.g., 10,1, 0.1, 0.01, ...)

* Pick the one that most reduces the cost
* Use 1 for next 100k iterations on the full dataset

— Alternative form:
No

T 1+ (decay * t)

n
* Step decay schedule:
— Drop the learning rate by half every 10 epochs.
r(——)

tdrop

floo
* n =" *(drop)

Learning rate comparison

Comparing Model Accuracy

A SR ARy
| % f Y
M
0.65 - W" “ , |

accuracy om validation set
o
(=2}
o

e —

e Constant Ir
s Time-based
e Step decay
050 | —— Exponential decay
0 20) 80 80 100

epochs

ACCELERATED GRADIENT DESCENT

Stochastic gradient descent

|dea: Perform a parameter update for each training
example x(i) and label y(i)

Update: &= 4-7- Vad (8 x(i), y(i))

Performs redundant computations for large
datasets

Momentum gradient descent

- ldea: Overcome ravine oscillations by momentum

SGD
Update:
- V= yver+ - Vod(6) @ :>>
-« = 6-Vvt

SGD with

momentum @ S>

Why Momentum Really Works

The momentum term reduces updates for
dimensions whose gradients change directions.

£} Starting Point

Optimum

N ‘Solu.lon

The momentum term increases for dimensions whose

gradients point in the same directions.
Demo : http://distill.pub/2017/momentum/

http://distill.pub/2017/momentum/

Nesterov accelerated gradient

* However, a ball that rolls down a hill, blindly
following the slope, is highly unsatisfactory.

* We would like to have a smarter ball that has a
notion of where it is going so that it knows to slow
down before the hill slopes up again.

* Nesterov accelerated gradient gives us a way of it.

Nesterov accelerated gradient

v =Y U1 +NVeJ (0 — yvi_1)
0 =60 — (o

Approximation of the next position of
the parameters()

Nesterov accelerated gradient

Approximation of the next position of
the parameters’ gradient()

v = Y U1 +NVeJ (0 — yvi_1)
0 =60 — (o

Approximation of the next position of
the parameters()

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =y vt—1 +NVeJ (0 — yvi-1)
0 =60 — V¢

Approximation of the next position
of the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =y vt—1 +NVeJ (0 — yvi-1)
0 =60 — V¢

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation of the next position

Blue line : pTEdiCt of the parameters’

gradient(correction)

Red line : correction v = Y V-1 +NVeJ (0 — yvi_1)
0 =60 — V¢

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation of the next position

Blue line : pTEdiCt of the parameters’

gradient(correction)

Red line : correction v = Y V-1 +NVeJ (0 — yvi_1)
0 =60 — V¢

Approximation of the next position
of the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =y vt—1 +NVeJ (0 — yvi-1)
0 =60 — V¢

Approximation of the next position
of the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

Approximation ofthe next position of

Blue Iine : pFEdiCt the parameters’ gradient(correction)
Red line : correction vt =y vt—1 +NVeJ (0 — yvi-1)
0 =60 — V¢

Approximationof the next position of
the parameters(predict)

Green line :accumulated gradient

Nesterov accelerated gradient

* This anticipatory update prevents us from going
too fast and results in increased responsiveness.

* Now , we can adapt our updates to the slope of our
error function and speed up SGD in turn.

What’s next...”

* We also want to adapt our updates to each
individual parameter to perform larger or smaller
updates depending on their importance.

e Adagrad
* Adadelta
* RMSprop
 Adam

Adagrad

* Adagrad adapts the learning rate to the parameters
* Performing larger updates for infrequent
* Performing smaller updates for frequent parameters.

* EX.

* Training large-scale neural nets at Google that learned to
recognize cats in Youtube videos.

Different learning rate for every
parameter

* Previous methods :
* we used the same learning rate np for all parameters 6

* Adagrad :

* |t uses a different learning rate for every parameter 6; at
every time step t

Adagrad

Rd X
d

Gt=

T wW)X

- @®-H,

Adagrad modifies the general learning

rate n based on the past gradients
that have been computed for 0;

SGD
9t+1,i — 9t,i — 1 gt
Adagrad
Or+1,6 = 01 77 :
/G i + €

gt.i

Vectorize

041 =0 —

gti = Vo (6;)

n

\/Gt—l—é

@gt.

Adagrad

SGn g%dx /

| =4

9t+1="; — Ota’i — 1" Gt,i Gy =

N

G¢ is a diagonal matrix where eachdiagonal
element (i,i) is the sum of the squares of the
gradients G;up to time step t.

t
Gtii = z g2
Adagrad . £
\/ Gt,ii + € Vectorize
Ori1 = 0; — —— O gs.

VGi+e

Adagrad

)

SGD REX "mum o o™

$
|

9t+1,z’ — 9t,z‘ — 1 Gt

-0l

€ is a smoothing term that avoids division by
zero (usually on the order of 1e - 8).

Adagrad
Ui

/G ii + € |

gt,i gt.i = VoJ(0;)

Vectorize

Or+1.5 = O

n

\/Gt—|—6

Ot41 = 0; — © g¢.

Adagrad’s advantages

* Advantages :
* It is well-suited for dealing with sparse data.
* |t greatly improved the robustness of SGD.
* |t eliminates the need to manually tune the learning rate.

Adagrad’s disadvantage

* Disadvantage :

* Main weakness is its accumulation of the squared
gradients in the denominator.

Adagrad’s disadvantage

* The disadvantage causes the learning rate to shrink
and become infinitesimally small. The algorithm
can no longer acquire additional knowledge.

* The following algorithms aim to resolve this flaw.
* Adadelta
* RMSprop
 Adam

Adadelta

* The expected square sum of gradients is recursively
defined as a decaying average of all past squared
gradients.

E[¢°]; = YE[9%]t—1 + (1 —7)97

« E[g?]: :Therunning average at time step t.

* ¥ : Afraction similarly to the Momentum term, around
0.9

Adadelta

Al = —n- gt
011 =0, + A6,

Adagrad
Ay=———" _0g
vV Gt + €
Adadelta
Ab; = — L gt

VE[g%: + ¢

Adadelta

Adagrad SGD
U Aby = —1- g1
Afy = — © gt t " 9t.i
VG t+e 0,11 = 0, + NG,

Replace the diagonal matrix G; with the decaying
average over past squared gradients E[g2];

Adadelta

n
Af;, = —
VB e

Adadelta

Adagrad SGD
U AbOy = —n- gy
Afy = — © gt t " 9t.i
VG t+e 0,11 = 0, + NG,

Replace the diagonal matrix G; with the decaying
average over past squared gradients E[g2];

Adadelta Adadelta

U U
A, = — A, = —
T T Bl e ‘= TRMS[g),”"

Update units should have the same hypothetical
units

* The units in this update do not match and the
update should have the same hypothetical units as
the parameter.

* As well asin SGD, Momentum, or Adagrad

* To realize this, first defining another exponentially
decaying average

E[A6%), = YE[A6Y,_; + (1 —) A6

Adadelta update rule

* Replacing the learning rate n in the previous update
rule with RMS[AB];—1 finally yields the Adadelta
update rule:

_RMS[AGly
RMS[g], “°
Orr1 =0, + A,

Agt —

* Note :

RMSprop

RMSprop and Adadelta have both been developed
independently around the same time to resolve
Adagrad’s radically diminishing learning rates.

RMSprop

E[g°]; = 0.9E[g?];—1 + 0.1¢7
n
VE|g?%]; + €

Oir1 =0y — gt

RMSprop

RMSprop as well divides the learning rate by an
exponentially decaying average of squared gradients.

RMSprop
E[g°]; = 0.9E[g?];—1 + 0.1¢7
n
v, =0, —

Hinton suggests y to be set to 0.9, while a good
default value for the learning rate n is 0.001.

Adam

e Adam’s feature :

* Storing an exponentially decaying average of past
squared gradients v¢ like Adadelta and RMSprop

* Keeping an exponentially decaying average of past
gradients m¢, similar to momentum.

my = Bimi—1+ (1 — B1)g: The first moment (the mean)

The second moment (the

vy = PBavs—1 + (1 — B2) g7 .
uncentered variance)

Adam

* As m; and v are initialized as vectors of O’s, they
are biased towards zero.
* Especially during the initial time steps
* Especially when the decay rates are small
* (i.e. 1 and B2 areclose to 1).

* Counteracting these biases in Adam

Adam
g = —
L= 1 _ npt n B
1—pi Orr1 =0, — — my
P VUt T €
t —
1— ,Bé Note : default values of 0.9 for (31,
0.999 for 35, and 10-8for ¢

Visualization

Visualization

— SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0

Enhancements comparison

Comparing Model Accuracy

075 |

0 : A "“A‘ ‘\--/A A ",‘V*‘ QINOSL

o b M) DA

- DA AN |")""M¢'o‘--\,r9-\-,‘0- Vs A ey
070 Jo /] AWAY LI A WA

0"\&‘@0\‘"« TN VI

§ 0.65
s
®
=
s
vy
© 0.60
=
(v
=
’ - Constant Ir
0.55 e Time-based
- Step decay
- Exponential decay
- Adagrad
- Adadelta
e RMSprop
0.50 t t t — Adam
0 20 40 60 80 100

epochs

Summary

 There are two main ideas at play:

— Momentum : Provide consistency in update
directions by incorporating past update directions.

— Adaptive gradient : Scale the scale updates to
individual variables using the second moment in
that direction.

— This also relates to adaptively altering step length
for each direction.

References:

* SGD convergence proof by Yuri Nesterov.

» Accelerated SGD: Ruder, Sebastian. "An overview of gradient descent
optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).

* First SGD in ML paper:
Léon Bottou and Olivier Bousquet: The Tradeoffs of Large Scale

Learning, Advances in Neural Information Processing Systems, 20, MIT Press,
Cambridge, MA, 2008.

66

