Scalable Data Mining

Sourangshu Bhattacharya
Dept. of Computer Science and Engineering, IIT Kharagpur.

Introduction to Machine Learning

Algorithms

- An algorithm is an unambiguous specification of how to solve a class of problems.
- Example: Euclid's algorithm for finding the greatest common divisor.
- Important Aspects:
- Analysis
- Design

Machine Learning

- Machine learning is a field of computer science that gives computers the ability to learn [from data] without being explicitly programmed.
- Example: Bayesian classifier for automatically filtering email spams.
- Aspects:
- Modeling
- Inference and learning

Traditional Programming

Machine Learning

Magic?

No, more like gardening

- Seeds = Algorithms
- Nutrients = Data
- Gardener = You
- Plants = Programs

Neural Network Basics

- Given several inputs: and several weights: and a bias value:

- A neuron produces a single output:

$$
\begin{aligned}
& o_{1}=s\left(\sum_{i} w_{i} x_{i}+b\right) \\
& \sum_{i} w_{i} x_{i}+b
\end{aligned}
$$

- This sum is called the activation of the neuron
- The function s is called the activation function for the neuron
- The weights and bias values are typically initialized randomly and learned during training

Activation functions

(a)

(b)
(a)is a step function or threshold function
(b)is a sigmoid function $1 /\left(1+e^{-x}\right)$

Changing the bias weight $W_{0, i}$ moves the threshold location

Feed forward example

Feed-forward network $=$ a parameterized family of nonlinear functions:

$$
\begin{aligned}
a_{5} & =g\left(W_{3,5} \cdot a_{3}+W_{4,5} \cdot a_{4}\right) \\
& =g\left(W_{3,5} \cdot g\left(W_{1,3} \cdot a_{1}+W_{2,3} \cdot a_{2}\right)+W_{4,5} \cdot g\left(W_{1,4} \cdot a_{1}+W_{2,4} \cdot a_{2}\right)\right)
\end{aligned}
$$

Adjusting weights changes the function: do learning this way!

How to Train a Neural Net?

Input
(Feature Vector)

Output (Label)

- Put in Training inputs, get the output
- Compare output to correct answers: Look at loss function J
- Adjust and repeat!
- Backpropagation tells us how to make a single adjustment using calculus.

Feedforward Neural Network

Forward Propagation

Forward Propagation

Calculate each Layer

Forward Propagation

Forward Propagation

Evaluate:

$$
J\left(y_{i}, \widehat{y_{i}}\right)
$$

How have we trained before?

- Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite direction
5. Iterate

How to Train a Neural Net?

- How could we change the weights to make our Loss Function lower?
- Think of neural net as a function $F: X->Y$
- F is a complex computation involving many weights $W _k$
- Given the structure, the weights "define" the function F (and therefore define our model)
- Loss Function is $\mathrm{J}(\mathrm{y}, \mathrm{F}(\mathrm{x}))$

How to Train a Neural Net?

- Get $\frac{\partial J}{\partial W_{k}}$ for every weight in the network.
- This tells us what direction to adjust each W_{k} if we want to lower our loss function.
- Make an adjustment and repeat!

Feedforward Neural Network

Calculus to the Rescue

- Use calculus, chain rule, etc. etc.
- Functions are chosen to have "nice" derivatives
- Numerical issues to be considered

Backpropagation

Backpropagation

Backpropagation

Backpropagation

Punchline

$$
\begin{aligned}
\frac{\partial J}{\partial W^{(3)}} & =(\hat{y}-y) \cdot a^{(3)} \\
\frac{\partial J}{\partial W^{(2)}} & =(\hat{y}-y) \cdot W^{(3)} \cdot \sigma^{\prime}\left(z^{(3)}\right) \cdot a^{(2)} \\
\frac{\partial J}{\partial W^{(1)}} & =(\hat{y}-y) \cdot W^{(3)} \cdot \sigma^{\prime}\left(z^{(3)}\right) \cdot W^{(2)} \cdot \sigma^{\prime}\left(z^{(2)}\right) \cdot X
\end{aligned}
$$

- Recall that: $\sigma^{\prime}(z)=\sigma(z)(1-\sigma(z))$
- Though they appear complex, above are easy to compute!

How have we trained before?

- Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite direction
5. Iterate
